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Introductio
n

Time Series is a Stochastic Process indexed in
[0 Discrete Time Domain
0 Continuous State Space

Time series data is a collection of observations obtained through repeated measurements

over time

Example

0 Closing Price of a Share

0 Inflation Rate every quarter
0 Temperature on a given day



https://www.influxdata.com/blog/what-is-time-series-data-and-why-should-you-care/
https://www.influxdata.com/blog/what-is-time-series-data-and-why-should-you-care/

Introduction Contd

Q Why do we need to model Time Series ?

0 To help understand the process better
0 To be able to forecast / predict future behaviour
0 To improve decision making
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1.1

Univariate Time Series
Process

0 Observe a single process at a sequence of different times
Continuous State Space
0 Discrete Time Set

1

0 The term "univariate time series" refers to a time series that consists of single (scalar)
observations recorded sequentially over equal time increments. ... If the data are
equi-spaced, the time variable, or index, does not need to be explicitly given.



1.2 Stationarity

0 Stationarity means that statistical properties of the stochastic process remain
unchanged.

0 Stationarities can be of two types

Strong / Strictly Stationary
Weak Stationary

A process {Xt} is

Strict Stationarity :- If the joint Distribution of (X1, X¢2, X3 - Xen) & Xe1450 Xe24+k - Xin+k)
is same i. e. all statistical properties remain the same.

Weak Stationarity if,
» Meanie. E(X,) is constant
» Covariance depends only on the time lag

» As covariance depends only on the time lag it implies that the variance of the process V(X;)
(Covariance with lag 0 ) is constant




1.3

Purely Indeterministic
Process

The process {Xt}is a purely indeterministic process if knowledge of X; ,X,, X3 is
progressively less useful at predicting the value of Xy as N - o

» When we talk of a ‘stationary time series process’ we shall mean a weakly stationary
purely indeterministic process.

» Example
X; =Y, + Y, is aStationary time series process



1.4 White Noise Process

» White Noise Process e; is a series of uncorrelated random variables.
» Fortime series we assume the mean of White Noise Process to be zero

> E(e,) =0

» Y =cov(eyeqr) =0 ; K=10
=0%2; K=0

» Sequence of normal random variable are an important representative of WNP
» A white noise process with mean zero is used to model error in Time Series




Question

Let Y; be a sequence of independent standard normal random variables. Determine which of the

following processes are stationary time series (given the definition above).

(i) X; =sin(wt+U), where U is uniformly distributed on the interval [0,27]
(ii) Xy =sin(a@t+Y;)
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1.5

Auto Covariance and Auto
Correlation

Auto Covariance

» If Time Series is stationary, covariance depends only on the lag k thatis y, =
cov(Xe, Xet1)

» Depends only on time difference & not specific points in time

» Auto Correlation Function
_ _covXeXerk)  _ Yk
Pl = 0 X0V Xern) 7o
» For Purely Indeterministic Processask —» oo ;p;, — 0
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Auto Covariance and Auto
Correlation

1.5

Correlograms

Stationary series Alternating series Series with trend
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Auto Covariance and Auto
Correlation

1.5

Question - Correlograms

Plot correlogram of average daytime temperature in successive months in Mumbai
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Partial Auto Correlation Function
PACF

Q Conditional auto correlation of X, , with X, given X,11, X2, X¢43 IS P

> Corr(Xe, Xepr | Xex1  Xewz s oo o Xegno1)
> ¢1=p1

2
__P2—pP1
> P2 =5
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Backward Shift Operator & Difference
Operator

» Backward Shift Operator
BXe= X1
B2X. =X,
B"X, = X,_,
For constantterms u,Bu,B?u=u,B" u=p
» Difference Operator
VX = Xe — Xe—1
V2X, = V(VX, — VX,_1)
= X — X1 — X1+ X
=X, —2X;_q + X;_,
V=1-B
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2.1
-

Auto Regressive Model & AR(p)
process

» A Time Series process X is an AR(p) process if it depends on past p terms
of series

> Xe=pta;(Xeey —p) +a,(Xe—p — ) + .. ... ay(Xe—p — 1) + €4
in an AR(p) process with mean u

Xt=a1Xeoq + axXe—p + .. .. apXe—p + e is an AR(p) process with mean
ZEero.
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AR(1) Process

AR(1) process X;
Xe=p+aXiq—u)+e
where e,~WNP

vV V

Mean of AR(1) process.
E(Xy) = u+a(u, —

Variance of AR( ) process

V(X) = a (11 ) + a?Var(X,)

\7\7 vV V

» Auto Covariance Function
> v = aky,

Condition for Stationarity
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AR(p) Process

0 Characteristic equation

0 Condition for Stationarity

I T T T ST e A W U ol g 1 y T T
4 ' ¥

 Determine whether the process X,

K
B

=Xp-1 --21- 1—2 €, is stational



Yule Walker Equation

- Vi = @1 * V-1 Qa¥Vk—1+ = @y *Vi_p +0° if (K =0)
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Question

Consider the time series model
(1—aB)® X; = ¢

where B is the backwards shift operator and e; is a white noise process with

variance 0'2 :

(i) Determine for which values of « the process is stationary. [2]
Now assume that o =0.4 .
(ii) (a) Write down the Yule-Walker equations.

(b) Calculate the first two values of the auto-correlation function p;,
and p,. [7]

(iii) Describe the behaviour of p, and the partial autocorrelation function
G as kK — oo [3]
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HW

Consider the following time series model:
Y; =1+0.6Y;_4 +0.16Y;_5 + &

where ¢; is a white noise process with variance o2,

(i) Determine whether Y; is stationary and identify it as an ARMA(p,q)
process. [3]

(i) Calculate E(Y;). [2]

(iii) Calculate for the first four lags:

e the autocorrelation values p4, po, p3, p4 and

e the partial autocorrelation values vy, y5, w3, ¥4 [7]
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Auxiliary equation and difference
equation

For ay, = byt_1 +cy,,

Ex.—X =5/6X_—1/6X_+e,

Q. — Give the general form of ACF of
X=08X _ —-0.1X _+e
n n-1 n-2 n
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2.2 Moving Average Process

‘H MA(q) Process
> Atime series process X is a MA(q) process if it can be written as weighted average
of the past ‘q" white noise terms (i.e error terms )

» Xe=pute+Prxeq+Pfrer o+ Byxerq
mean (u)

» Xe=er+Pr*ei1+Prep+ - Bgxeg
mean O
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1.2 MA(1) process
=

» MA(1) process
» Xp=pt+e+pfrxeq

» Mean E(X;) = u
» Variance V(X;) =

» Auto Correlation Function

24



1.2 MA(q) process

Assuming e, ~ N(0,1), calculate the autocovariance and autocorrelations of the following
process and mention the type of process:

Xy = 3+ en — en-1 + 0.25 €én-2

HW

Xn=14+e,—5e,-1+66€;_,
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Invertibility & Stationarity

‘E » Atime series is invertible if the white noise terms e; is a convergent sum of the X
terms
» MA(T) - AR(c0)

> Invertibility is a desirable characteristic as it enables us to calculate the residual /
error term & hence , analyse goodness of fit of the model

» Similarly, a Time Series X is stationary if X term is a convergent sum of the e,
terms
> AR(1) » MA(x)
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Question

SRR
IV E<S ré .
e, T Ve 51 )

Determine whether the process X, =2+e; —5e;_1 +6e;_; is invertible.
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2.3 ARMA (p,q) process

» A Time Series X is ARMA (p,q) if it is the sum of AR(p) process & MA(q) process
» Xt=pu+a;(Xe—1 — 1) + ... ... ap (Xt_p — u) + et + Bret—1+.. +Bget—q

Conditions for Stationarity and Invertibility

2
\

Show that the process 12X; =10X;_; —2X;_, +12e; —11e;_; +2e;_, is both stationary and 3

invertible.
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2.3 ARMA (1,1) process

Xt=a;(Xe—q — 1) + e+ frep—q

Find autocovariance and autocorrelation function of the process
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54 ARIMA (p,d,q) process — Auto Regressive
" Integrated Moving Average
-

» A Time Series is an ARIMA(p ,d ,q) process if it needs to be differenced
'd’ times to reduce it to a stationary process.

>ie if Y =V2X isan ARMA(p ,q) process, then X is an ARIMA(p ,d ,q)
process

30



54 ARIMA (p,d,q) process — Auto Regressive
" Integrated Moving Average

5 [x,=06X,_, +03X,,+01X,  +e, —0.25e,_;
Check whether it is an ARIMA process, and if yes, solve for p,d,q

HW
2 Xt =7 Xt—l —9 Xt—Z +5 Xt—3 i Xt—4- + €t — €t_»o
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Question

carefully that the relationship S; =1.58;_4 +0.55;_3 +Z; +0 SZH G
x| edasan ARIMA(I 2,1) process. ’

-.JLL Aafininme Amiintinn: i il ;ﬂ l”u“ﬂ‘h )
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3.1 Markov Process

‘E > |f future development is determined based on present value inly then
process is said to have Markov property and hence the process could be
called a Markov process

» Thus, Markov processes are the natural stochastic analogs of the
deterministic processes described by differential and difference equations.

AR(1) is a Markov process
AR(p) is a not a Markov Process
MA(1) is not a Markov process [ since MA(1) - AR() |]

V VY
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are your answer to (i) with P(X',, >0(X,_1 <0, il

process is Markov.
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