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Today’s Agenda

1. Achieving Stationarity

2. Identification of Time Series Processes

3. Fitting a Time series model using Box-Jenkin’s Methodology
4. Forecasting

5. Other Time series processes



1.1 Compensating for trend and seasonality

In this section, we deal with possible sources of non-stationarity and how to compensate for them.

Lack of stationarity may be caused by the presence of deterministic effects in the quantity being
observed.

We can identify three possible causes of non-stationarity:
1. a deterministic trend (eg exponential or linear growth)
2. a deterministic cycle (eg seasonal effect)

3. the time series is integrated.

It is worth pointing out that this list is not exhaustive.



1.2 Detecting non-stationary series

« The most useful tools in identifying non-stationarity are the simplest: a plot of the series against
t, and the sample ACF.

 Plotting the series will highlight any obvious trends in the mean and will show up any cyclic
variation which could also form evidence of non-stationarity. This should always be the first step
in any practical time series analysis.

« The sample ACF should, in the case of a stationary time series, ultimately converge towards zero
exponentially fast,

* |If the sample ACF decreases slowly but steadily from a value near 1, we would conclude that the
data need to be differenced before fitting the model. If the sample ACF exhibits a periodic
oscillation, however, it would be reasonable to conclude that there is some underlying cause of
the variation.



1.2 Detecting non-stationary series

Example

Below is the ACF plotted for FTSE 100 Index.

The sample ACF is clearly non-stationary as the
values decrease in some linear fashion;
differencing is therefore required before fitting
a stationary model.

ACF
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Series log(FTSE100$Close)
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1.3 Least squares trend removal

The simplest way to remove a linear trend is by ordinary least squares. This is equivalent to
fitting the model:

xt =a-+ bt + yt
where a and b are constants and y is a zero-mean stationary process. The parameters a and b
can be estimated by linear regression prior to fitting a stationary model to the residuals y;.

Differencing
Differencing may well be beneficial if the sample ACF decreases slowly from a value near 1
but has useful effects in other instances as well. If, for instance, x; = a + bt + y;, then:

th == b + Vyt

so that the differencing has removed the trend in the mean.



1.4 Seasonal Differencing

Where seasonal variation is present in the data, one way of removing it is to take a
seasonal difference.

Example 1
Suppose that the time series x records the monthly average temperature in London. A model of
the form:

Xe =U+ 0 +y;
might be applied, where 6 is a periodic function with period 12 and y is a stationary series.
Then the seasonal difference of x is defined as (V,,x); = x; — x;_1, and we see that:
(Vo) =2 — X1 = U+ 0c +ye) — (012 + Yeo12) = Ve — Vee12
Is a stationary process.

We can then model the seasonal difference of x as a stationary process and reconstruct the
original process x itself afterwards.



1.5 Method of moving averages

The method of moving averages makes use of a simple linear filter to eliminate the effects of
periodic variation.

A linear filter is a transformation of a time series x (the input series) to create an output series y
that satisfies:

_ 0
YVt = Zk=— oo Ak Xt—k



1.6 Method of seasonal means

The simplest method for removing seasonal variation is to subtract from each observation the
estimated mean for that period, obtained by simply averaging the corresponding observations in
the sample.

Suppose that the time series x records the monthly average temperature in London. A model of the
form: Xe =pU+ 0+ v,

might be applied, where 8 is a periodic function with period 12 and y is a stationary series. The term
0, contains the deviation of the model at time t due to the seasonal effect. So:

Ve =Xt —U—0;

When fitting the model to a monthly time series x extending over 10 years from January 1990 the
estimate for u is ¥ and the estimate for 9January IS:

A 1 X
9January - 1—0(x1 +X13 + X5 + -+ X109) — A

So, in this case, we can remove the seasonal variation by deducting the January average,
XJanuary = 1—10 (X1 + x13 + x5 + - + X199), from all the January values.



1.7 Transformation of the data

Diagnostic procedures such as an inspection of a plot of the residuals may suggest that even the
best-fitting standard linear time series model is failing to provide an adequate fit to the data.
Before attempting to use more advanced non-linear models, it is often worth attempting to
transform the data in some straightforward way in an attempt to find a data set on which the
linear theory will work properly.
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1.7 Transformation of the data

Variance-stabilising transformations

Transformations are most commonly used when a dependence is suspected between
the variance of the residuals and the size of the fitted values. If, for example, the
standard deviation of X;,; — X; appears to be proportional to X;, then it would be

appropriate to use the logarithmic transformation, to work on the time series Y =
InX.
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1.7 Transformation of the data

Transformations to increase normality

In certain applications it may be found that most residuals are small and negative,
with a few large positive values to offset them. This may be taken to indicate that the
distribution of the error terms is non-normal, leading to doubts as to whether the
standard time series procedures, designed for normal errors, are applicable. It may
be possible to find a transformation which will improve the normality of the error
terms of the transformed process, but care should be taken that this does not lead
to instability in the variance. A further caution when using transformed data involves
the final step of turning forecasts for the transformed process into forecasts for the
original process, as some transformations introduce a systematic bias.
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X

Question

CT6 April 2015 Q7
The following time series model is being used to model monthly data:

Y=Y, +Y,_, Y, _5+e +Pie_ +Bae 1o +BiB1a€ 13

where e, is a white noise process with variance 2.

(i) Perform two differencing transformations and show that the result is a moving average
process which you may assume to be stationary. [3]

(i) Explain why this transformation is called seasonal differencing. [1]

(ii) Derive the auto-correlation function of the model generated in part (i). [8]
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Solution

(1) Set X,= (1 — B'?)(1 — B) Y, where B is the background shift operator
Le. X, =Y, - Y - Yt Y3
then we have X; =e, + Bre,_;+ Bpe 1+ BiBire i3

=(1+BB)(1 +B12B")e,
which 1s a moving average process [of order 13].

(11)  This 1s called seasonal differencing because 1t compares the monthly change in
Y, with the corresponding monthly change at the same time last year.
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Solution

(111)  We can see that
Yo =Cov(X, X)) = (1+B,° +PBpy° +B Ba )" = (1+B, 7)1+ P, )o”

71 = Cov(X, X)) =Cov(e,+ Bie,_; + Brae, 12+ BiBr2e13:
e, 1+ Bre ot Brae 13+ BiBrae14)

= (B +BiB122)o” =By (1+ By, )o”

Y11= Cov(X, X,_11) = Cov(e, + Bie,; + Brae, 12 + BiB12€r13:
e, 11T Bie 12t Braeras + BiBi2e24)

=BB, o
Y12= (Bia +B1°B12 o~ =B (1+B,%)o”

2
Y13 =BB1r © 15



Solution

and vy, =0 for all other values of s.

Bi(1+BH) By

TP paeph)  14p2
BBy
PP 14 By
_ BpU+BD) By
P12

C+BDI+BY)  1+Bh

and py = 1 and p, = 0 for all other s.
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|dentification of Time Series Processes

2.1 Identification of MA(q)

The distinguishing characteristic of MA(q) is that p;, = 0 for all k > q. A test for the
appropriateness of an MA(q) model, therefore, is that r;, is close to O for all k > q.

1. Plotr, vs k
2. Asymptotic distribution for r, ( for k > q)

q
Pk ~ N(O,l/n (1 + 2 * z pf)
i=1

Confidence Interval for r;,

q

= iza/zw/l/n<1+2* pf

=1
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|dentification of Time Series Processes

2.2 Identification of AR(p)

The corresponding diagnostic procedure for an autoregressive model is based on the
sample partial ACF, since the PACF of an AR (p ) is distinctive, being equal to zero for k

> P.

1. Plot ¢y vs k
2. Asymptotic distribution for ¢ ( for k > p)

¢x ~ N(0,1/n)

Confidence Interval for ¢

=122/ 1/n = +2/Vn
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|dentification of Time Series Processes

2.3 Identification of WNP (White Noise Process) (Method 1)

1. Calculate e; values using Backward forecasting
2. Plot e; against time

3. Asymptotic distribution for
px ~ N(0,1/n)
$x ~ N(0,1/n)

Confidence Interval for both

= +7q2\1/n ~ £2/V7
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|dentification of Time Series Processes

2.3 Identification of WNP (White Noise Process) (Method 2)

Portmanteau test by Ljung & Box
e Overall goodness of fit test
e H, - residuals are WNP v/s H; — not H,
e Model for WNP
Xe=p+e

2

Test static = n(n + 2) Y11=, ﬂ ~ X

for each m

o Decision criteria : Reject H, at a% level of significance if

2 2
X" cal” X  tab

This is a one-sided test. A large test statistic indicates that the data do not confirm to
a white noise process.
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Fitting a time series model using the Box-Jenkins
methodology

The Box-Jenkins approach allows one to find an ARIMA model which is reasonably simple and
provides a sufficiently accurate description of the behavior of the historical data.

Main steps in the Box-Jenkins approach to modelling

The main steps of the approach are:

 tentative identification of a model from the ARIMA class
« estimation of parameters in the identified model
 diagnostic checks.

If the tentatively identified model passes the diagnostic tests, the model is ready to be used for

forecasting. If it does not, the diagnostic tests should indicate how the model ought to be
modified, and a new cycle of identification, estimation and diagnosis is performed.

21



Fitting a time series model using the Box-Jenkins
methodology

1. Tentative identification of a model from the ARIMA class

An ARIMA (p,d,q) model is completely identified by the choice of non-negative integer values
for the parameters p, d and g . The parameter d is the number of times we have to difference

the time series x to convert it to some stationary level.

22



Fitting a time series model using the Box-Jenkins
methodology

The following principles can be used to choose the appropriate value of d :

1. A time series x can be modelled by a stationary ARMA model if the sample autocorrelation
function r;, decays rapidly to zero with k. If, on the other hand, a slowly decaying positive
sample autocorrelation function r;, is observed, this should be taken to indicate that the time
series needs to be differenced to convert it into a likely realisation of a stationary random
process.

2. Let 62 denote the sample variance of the process z(¥) = V%x, ie the sample variance of the
data values after they have been differenced d times. It is normally the case that 67 first
decreases with d until stationarity is achieved and then starts to increase. Therefore, d can be
set to the value which minimises 82. This could be d = 0 if the original time series x is
already stationary.
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Fitting a time series model using the Box-Jenkins
methodology

Fitting an ARMA(p, q) model

Suppose now that the appropriate value for the parameter d has been found, and the time
series {Zg41,Zq+2, -, Zn} IS adequately stationary. (Notice that a differenced series has d fewer
observation than the original series.) We shall assume throughout this section that the
sample mean of the z sequence is zero; if this is not the case, obtain a new sequence by
subtracting fi = z from each value in the sequence. We shall also assume, for the sake of
simplicity in setting down the lower and upper limits of sums, that d = 0.

In the framework of the Box-Jenkins approach we try to find an ARMA(p, g) model which fits
the data z.

If either the correlogram or the partial correlogram appears to be close to zero for sufficiently
large k, an MA (q) or AR (p) model is indicated. Otherwise, we should look for an ARMA(p, q)
model with non-zero values of p and q ..
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Fitting a time series model using the Box-Jenkins
methodology

Fitting an ARMA(p, q) model

A good indicator for possible values of p and g in an ARMA p g (,) is the number of spikes in
the ACF and PACF until some geometrical decay to zero is observed.

For more complex models, we perform a trail and error method:
Eg - ARMA(1,1)

- ARMA(2,1)

- ARMA(1,2)

Every additional parameter improves the fit of the model by reducing the residual sum of
squares. Taking this to extremes, a model with n parameters could be found to fit the data

exactly.

How will take care of overfitting the model?

25



Fitting a time series model using the Box-Jenkins
methodology

Fitting an ARMA(p, q) model

The question of when to stop adding new parameters is addressed by Akaike's information
criterion (AlIC), which states that we should only consider adding an extra parameter if this
results in a reduction of the residu sum of squares by a factor of at least e=2/", or
alternatively, one can evaluate for each possible model the value of:

number of parameters
n

AIC( model ) = log(6?) + 2 X

and choose as the most appropriate the one corresponding to the lowest such value.
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Fitting a time series model using the Box-Jenkins
methodology

2. Parameter Estimation

Once the values of p and g have been identified, the problem becomes to estimate the values
of parameters ay, ay, ..., a, and By, By, ..., B4 for the ARMA(p, q) model:

Zt = 12t + ArZ¢_o + -+ apZt_p + €¢ + ﬂlet_l + ﬂzet_z + e+ ,qut_q

Least squares estimation suggests itself; this is equivalent to maximum likelihood estimation
if the e; may be assumed normally distributed.

27



Fitting a time series model using the Box-Jenkins
methodology

2. Parameter Estimation

In the case of a more general ARMA process we encounter the difficulty that the e, cannot be
deduced from the z;. For example, in the case of ARMA(1,1) we have:

e = Zy — W1 Zp_q — P1€41

an equation which can be solved iteratively for e; as long as some starting value e is assumed.
For an ARMA(p, q) the list of starting values is (e, ..., eg_1).

The starting values need to be estimated, which is usually carried out by a recursive technique.
First assume they are all equal to zero and estimate the a; and ; on that basis, then use

standard forecasting techniques on the time-reversed process {z,, ..., z;} to obtain predicted
values for (e, ..., e;—1 ), @ method known as backforecasting. These new values can be used as
the starting point for another application of the estimation procedure; this continues until the
estimates have converged.

This is done by software packages.
28



3 Fitting a time series model using the Box-Jenkins
methodology
2. Parameter Estimation

The final parameter of the model is 2, the variance of the e;, which may be
estimated using:

n n

29



Fitting a time series model using the Box-Jenkins
methodology

3. Diagnostic Checking

After the tentative identification of an ARIMA(p, d,q) model and calculation of the estimates
a,d,a, ...,dp,,él, ...,ﬁq we have to perform diagnostic checking. The principle of this is that, if
the ARMA(p, q) model is a good approximation to the underlying time series process, then the
residuals é; will form a good approximation to a white noise process.

There is a set of checks to be performed:

 Inspection of the graph of the residuals

* Inspection of the sample autocorrelation functions of the residuals
« Counting turning points

30



Fitting a time series model using the Box-Jenkins
methodology

3. Diagnostic Checking

Inspection of the graph of the residuals

The visual inspection of the graph of the residuals against t or the graph of é; against z; can
help to highlight a poorly fitting model.

If any pattern is evident, whether in the average level of the residuals or in the magnitude of
the fluctuations about 0, this should be taken to mean that the model is inadequate.

Inspection of the sample autocorrelation functions of the residuals

If the SACF or SPACF of the sequence of residuals has too many values outside the range =2 N,
we conclude that the fitted model does not have enough parameters and a new model with
additional parameters should be fitted.
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Fitting a time series model using the Box-Jenkins
methodology

3. Diagnostic Checking

Counting turning points
If 1, ¥, ..., ¥n IS @ sequence of numbers, then we say that the sequence has a turning point at

time k if either y,_; <y, and y, > V11, OF Vi—1 > Vi and vi, < Viey1-

IfY;,Y,, ..., Yy is a sequence of independent random variables with continuous distribution,

then the probability of a turning point at time k is 2/3, the expected number of turning points

. 2 . . 16N-29
IS E(N — 2), and the variance is v

This is a result for a sequence of independent random variables. It is therefore usually applied
to the residuals of the time series, not to the original time series itself, which will not be
independent.
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X

Question

CS2A A2023 Q8
Consider the time-series model:

Ve =aYVi—,+e,+be_, (A)
where et is white noise with mean 0 and variance 2.
(i) Derive the possible values of a and b for which the process yt is stationary and invertible. [4]
(i) State the values of p and g for which yt is an ARMA(p, q) process. [1]
If b = 0 the oriainal model (A) reduces to

Ye =AY T+ € (B)

(iii) Derive the autocorrelation function for this model while stationarity is assumed to hold. [8]

An actuary attempts to fit the model (A) to some time series data but concludes that the simpler
model (B) is more appropriate.

(iv) Discuss how this conclusion could have been reached. [4] [Total 17]
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Solution

(1)

Using the backshift operator one can show that the corresponding polynomials are
1-a B"2

and

1+bB

The roots need to be in absolute value less than 1

abs(a)<1 and abs(b)<1

(1)
ARMA(2,1)

(111)

The Yule-Walker equations are
gamma (=a gamma 2+sigma”2

and

gamma k=a gamma [k-2} fork>=1
So

[1]
[1]
[2]

[1]

[1]
[1]
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Solution

gamma l=a gamma 1 [1]
gamma_ 2=a gamma () [1]
These imply that

gamma |=0, gamma 2=a gamma 0 and in general [1]
gamma_k =0 for k odd [1]
gamma k =a"{k/2} gamma 0 for k even [1]
therefore

rho k=0 for k odd [14]
rho k=a"(k/2) for k even [Y2]

(There are no marks available for deriving the Yule Walker equations from first
principles)

(iv)

Sample acf of the data could have indicated insignificant spikes for odd lags as

for b=0 case those values are zero [2]
AIC/BIC could have also been used to confirm the statistical preference between the

two models [1]
In the parameter estimation process for model (1), some low t-values could have been
produced, particularly for the parameter b, indicating over-parametrisation. [1]
other sensible comments contrasting the fit of the two models [1]

[Marks available 5, maximum 4]
| Total 17]
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Forecasting

Box-Jenkins approach to forecasting stationary time series

Using the Box-Jenkins approach, forecasting is relatively straightforward. Having fitted an
ARMA model to the data {x4, ..., x,,} we have the equation:

Xnsk =4+ al(xn+k—1 - ﬂ) + e+ ap(Xn+k—p - I") T enik T ﬁlen+k—1 + ot ﬁqen+k—q

We will now look forward to forecasting for this series.

36



Forecasting

Box-Jenkins approach to forecasting stationary time series
Forecasting future values of an ARMA process

The forecast value of X,,,; given all observations up until time n, known as the k-step ahead
forecast and denoted %, (k), is obtained from this equation by:

replacing all (unknown) parameters by their estimated values;

replacing the random variables X;, ..., X, by their observed values x4, ..., x,,;

replacing the random variables X,, .1, ..., X,+x—1 by their forecast values %,,(1), ..., X, (k — 1);
replacing the innovations ey, ..., e, by the residuals é;, ..., é,;

replacing the random variables e, 4, ..., e,+x—1 by their expectations, 0

For example, the one-step ahead and two-step ahead forecasts for an AR(2) are given by:

(1) =4+ &1(xn - ﬁ) + &Z(xn—l - /:i)
Xn(2) = A+ @1 (£,(1) — ) + ax(xp — )
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4 Forecasting

Forecasting ARIMA processes

If X is an ARIMA(p, d, q) process, then Z = V¢X is ARMA(p, q), so the techniques of Section 4.1
can be used to produce forecasts and confidence intervals for future values of Z.
By reversing the differencing procedure these can be translated into forecasts of future values

of X.

For example, suppose that X is ARIMA(0,1,1).
Then Z,, = VX,, = x,, — x,,_1 iIs ARMA(0,1), and x,, = x,,_1 + z,,.
Hence X,,,1 = X, + Z,,41, and £,,(1) = x,, + Z,,(1).
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5.1 Multivariate time series models

We can write a univariate time series in multivariate (or vector) form.

For example, the time series x; = a1x;_1 + a,x:—, + e; + Be;_, can be written as
Xt 0 a; oy Xt 1 ﬁ 0 €t
Xt-1|=10 1 O |J[Xt-2|+|O0 O O) (et—1>
Xt—2 0 0 1/ \Xt-2 0 0 0/ \ét-

The advantage of the vector form is that it displays the Markov property.

le X;= Ax;_1 + Be;

The vector process is stationary if the eigenvalues A of the matrix A are all strictly less than 1 in

magnitude. The eigenvalues are found by solving det(4 — Al) = 0 where I is the identity matrix.

39



5.2 Cointegrated series

Two time series processes X and Y are called cointegrated if:
(i) X and Y are I(1) random processes

(i) there exists a non-zero vector (called the cointegrating vector) (a, ) such that aX + Y is
stationary.

We might expect that two processes are cointegrated if one of the processes is driving the
other or if both are being driven by the same underlying process.

40



5.3 Other non-linear, non-stationary time series

Other examples of time series include:

= bilinear models, which exhibit 'bursty’ behavior:
Xn—a(Xp_g — W) =p+ep+Ben g +b(xnq —tey_q
» threshold autoregressive models, which are used to model 'cyclical' behavior:

a,(xp_1— W) +e, ifx,_4=<d
Xp = U+ :
ay,(xXp_1— 1) +e, ifx,_q4>d
= random coefficient, autogressive models:
xe =p+ ag(xe_g —w) +eg

where {a4, a5, ..., a,} is a sequence of independent random variables.
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5.3 Other non-linear, non-stationary time series

Other examples of time series include:

= autoregressive conditional heteroscedasticity (ARCH) models, which are used to model
asset prices, where we require the volatility to depend on the size of the previous value:

p
Xe =U+e [apt Z ap(xp_ — w)*
\J k=1
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X

Question

CT6 S2015 Q11
Consider the following pair of equations:

X, =0.5X, +BY,+ &

Y,=0.5Y, +BX,+ &

f
where E: and Ef are independent white noise processes.
(i) (@) Show that these equations can be represented as
1
E!’

4 Y &

where M and N are matrices to be determined.
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X

Question

(b) Determine the values of B for which these equations represent a stationary bivariate
time series model. [9]

(i) Show that the following set of equations represents a VAR(p) (vector auto regressive)
process, by specifying the order and the relevant parameters:[3]

_ !
Xy=oX tal,  +e

!

2
Y,=BX,_ - BX,, t g

44



Solution

(1) (a) It follows that

(4 A0 M)

(b)  Multiplying both sides by

(5 - )
B 1 (1-p*H\B 1

we then have

Sl hts 2
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Solution

Which is a stationary VAR(1) model if the eigenvalues of

1 1 B
Ay =
' 2(1—132)[13 1}

are those A such that

det(lgl b ]:0 orhia=1+B

then the eigenvalues of A, are less than one in absolute value 1f
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Solution
1+p <1 1e.
2(1-B%)

! ‘{:1
2(1-B)

and
P

<1
2(1+B)

which implies that |B| < % or [B| }%
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Solution

(1) Here we have a VAR(2) where

A‘z[g 3] Azz[ v g)

since
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