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Today’s Agenda

Non-stationary and Non-Linear Time series

1. Bilinear models

2. Threshold Autoregressive models

3. Random Coefficient Autoregressive models

4. Autoregressive models with conditional heteroscedasticity



Bilinear Models

The general class of bilinear models can be exemplified by its simplest representative, the random
process X defined by the relation:

Xp-a(Xn1—p)=p+en+Pen 1+b(Xnq1-p)en_q

Considered only as a function of X, this relation is linear; it is also linear when considered as a
function of e only. Therefore, it is called ‘bilinear’.

The main qualitative difference between the bilinear model and models from the ARMA class is
that many bilinear models exhibit ‘bursty’ behavior: when the process is far from its mean it tends
to exhibit larger fluctuations. The difference between this model and an ARMA(1,1) process may
be seen to lie in the last term on the right-hand side: when X,,_; is far from p and e,,_; is far from
0 — events which are far from being independent — the final term assumes a much greater
significance.



Threshold autoregressive models

A simple representative of the class of threshold autoregressive models is the random process X
defined by the relation:

Xpq4—nu)+e, if X, 4=d
X, =+ (X, 4 — H) n, | n—1
ar( X, 1 —u)+e, if X, 4>d

The distinctive feature of some models from the threshold autoregressive class is the limit cycle

behavior. This makes the threshold autoregressive models suitable for the description of ‘cyclic’
phenomena.



3 Random coefficient autoregressive models

Another modification of the AR class of models is that of autoregressive models for which
the coefficient is random. In other words:

Xe=p+a (X1 —p) +e

where {a4, a5, ..., a,} is a sequence of independent random variables.

Such a model could be used to represent the behavior of an investment fund, with u =0
and a; = 1+ i; with i; being the random rate of return.

The behavior of these processes can vary widely, depending on the distribution chosen for
the a;, but is in general more irregular than that of the corresponding AR(1).



Autoregressive models with conditional
heteroscedasticity

What is heteroscedasticity?

Financial assets often display the following behavior. After a large change in the asset price there
follows a period of high volatility, which can be in either direction. Following small changes there
tend to be further small changes. In other words, the variance of the process is dependent upon
the size of the previous value. This is the property of conditional heteroscedasticity.

The words ‘homoscedastic’ and 'heteroscedastic’ just mean having equal (i.e., constant) or
different variances, respectively.



Autoregressive models with conditional
heteroscedasticity

The class of autoregressive models with conditional heteroscedasticity of order p - the ARCH (p) -
is defined by the relation:

p

2

X¢ =ﬂ+EtJﬂ’u + ) e (X g — H)
k=1

where e is a sequence of independent standard normal random variables. The simplest
representative of the ARCH (p) class is the ARCH(1) model defined by the relation:

2
Xq =#+E:Jt=u +aq( X1 — p)

If uis zero, it can be shown that cov(X;, X;) = 0 for s # t confirming that X; is white noise with
uncorrelated but not independent components.



Autoregressive models with conditional
heteroscedasticity

The ARCH models have been used for modelling financial time series. If Z; is the price of an
asset at the end of the t-th trading day, it is found that the ARCH model can be used to
model X; = In(Z;/Z;_,), interpreted as the daily return on day t.

The ARCH family of models captures the feature frequently observed in asset price data that
a significant change in the price of an asset is often followed by a period of high volatility.

As may be seen from the ARCH(1) model, a significant deviation of X;_; from the mean u
gives rise to an increase in the conditional variance of X; given X;_;.
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