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Today’s Agenda

1. Introduction
1. Introduction to Extreme events
2. Heteroscedasticity

2. Extreme Value Theory
1. Generalised extreme value (GEV) distribution

3. Peak over threshold exceedances

4. Measures of Tail Weights



1.1

Introduction to Extreme Events

Extreme events
Events that have a low probability of occurring and a high financial impact i.e. low frequency and

high severity.

Example :-
* Aloss due to natural calamity
« A stock market crash.

Modelling such extreme events proposes a set of difficulties.
What do you think can be the difficulties encountered while modelling extreme events?



1.1 Introduction to Extreme Events

Difficulties in modelling extreme events

« No data / very less data for extreme events.

« Non normality of financial returns or losses as these event distributions have fatter tails and
sharper peaks

« Probability of extreme events is underestimated as normal distribution has narrow tails.



1.2 Heteroscedasticity

Let’s revise Kurtosis

Many types of financial data tend to be narrowly peaked in the centre of the distribution
and to have fatter tails than the normal distribution. This shape of distribution is known as
leptokurtic.

For example, when share prices are modelled, large price movements occur more frequently than
predicted by the normal distribution. So the normal distribution may be unsuitable for modelling
the large movements in the tails.

The word ‘leptokurtic’ is a measure of the kurtosis of a distribution, which is the fourth
standardised central moment of a distribution:

K = 3 is mesokurtic distribution [Normal Distribution]
« K> 3is leptokurtic distribution [Sharper Peak]
« K < 3is platykurtic distribution [Flatter Peak]



1.2 Heteroscedasticity

‘ Asset Return Volatility is not a constant (clustering volatility ) but it changes stochastically
with time. This property is known as heteroscedasticity.

The graph below compares two distributions for the price of a share in one year’s time:
. a N(5, ) distribution with constant volatility, o =1

° a N(5, r:rz) distribution where the volatility is heteroscedastic, ie 0=0.5 and o =1.5
with equal probability.



1.2 Heteroscedasticity

Probability density

0.60

o
U
o

o
S
o

o
[¥8)
o

Distribution of share price with constant / variable
volatility

«.eeeeees Constant
volatility

Variable
volatility

Share price




Extreme value theory

Fortunately, better modelling of the tails of the data can be done through the
application of extreme value theory. The key idea of extreme value theory is that the
asymptotic behaviour of the tails of most distributions can be accurately described by
certain families of distributions.

More specifically, the maximum values of a distribution (when appropriately standardised) and
the values exceeding a specified threshold (called threshold exceedances) converge to two
families of distributions as the sample size increases.

These two families of distributions are:
» generalised extreme value distributions, and
» generalised Pareto distributions.



2.1 Generalised Extreme value (GEV) distribution

Block Maxima

One approach is to look at X,; = max{X;, X,, ..., X,;}, the maximum value in a set of n values. This
is referred to as a block maximum.

T |

X,, = max value of X in a block a;‘::fm ® ® ®
m = no of blocks X | - d
n = no of values in a block He R BeANe o
X =max(Xy, Xop - X)) £ O O | :
X is the block maxima O olo
1°a0l&° %,

Block maxima model



2.1 Generalised Extreme value (GEV) distribution

The dataset below shows the claim amounts in £000s in respect of a commercial property
portfolio over a period of a year.

Claim Claim Claim Claim Claim Claim Claim Claim
number | amount number | amount number | amount number | amount

i 9 17 12 33 19 49 118
2 28 18 35 34 17 50 55

3 20 19 12 35 66 51 14
4 8 20 75 36 55 52 94
5 102 21 80 37 81 53 54
6= 152 22 42 38 140 54 81
7 23 23 9 39 64 55 62
8 108 24 122 40 9 56 83
9 42 25 145 41 9 57 23

10 12 26 13 42 36 58 19

il 110 27 16 43 185 59 55

12 9 28 113 44 135 60 104

13 22 29 9 45 25

14 37 30 8 46 16

15 147 31 12 47 55

16 128 32 84 48 31
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2.1 Generalised Extreme value (GEV) distribution

— Question

m -
1) Determine the values of X,, where the block size is:
@Qn=5
(b)yn=10

(i)  Comment on the trade-off between the block size and the values of X,, that will be used to
fit the extreme value distribution.
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2.1 Generalised Extreme value (GEV) distribution

Solution

(i)(@) The values of X, are {102,152,147,128,145,113,84,140,185,118,94,104} .
(i)(b) The values of X,, are {152,147,145,140, 185,104/ .

(ii) The larger the block size, the fewer the number of blocks (eg when n=10 there are six
blocks whereas when n=5 there are twelve blocks). The fewer the number of blocks, the
fewer (but more ‘extreme’) the values of X,, that will be used to fit the extreme value

distribution.
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2.1 Generalised Extreme value (GEV) distribution

Block Maxima

If we look at a number of such blocks, we find that these maximum values can be standardised
XpM—an
Bn
a particular type of distribution - called an extreme value distribution.

in a similar way, ie we can calculate expressions of the form that can be approximated by

Distribution of the (standardised) maximum values

F(x), the cumulative distribution function of the block maximum is:

P(xy < x) =P(x; <x,%, < X,.., Xy < X)
=P(x; <x)P(x, < x)..P(x;;, < x)
= [P(x <x)]"

= [F(I"
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2.1 Generalised Extreme value (GEV) distribution

We can attempt to standardise the values of X, by finding a sequence of constants a4, a5, ... and
B1, B2, ... > 0 so that the limiting distribution:

lim P (xM — I x) = lim [F(Bx + a,)]"

n—oco

depends only on x.

For example, if the individual losses are distributed exponentially with F(x) = 1 — e™*, we can

1 1
set a, =~ Inn and B, = >

Let's see how we can simplify this:
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2.1 Generalised Extreme value (GEV) distribution

Let X ~ Exp(1), a, = %lnn and 3, = % for all n.
By substituting in for a,, and B,, and by using the CDF of the exponential distribution, we have

Xy —
lim P< M < x) = lim [F(B,x + a;,,))|"
n—->0o0

n—0o ﬁn

(Hint: limy, (1 + %)n =e*.)

1 1 "
lim [F(B,x + a;,) " = lim [F (—x + —=1In n)]

= i 1 A . 11 '
—nl_r)glo —exp|— Ax+Ann

= lim {1 — exp(—x — Inn)}"

n—>0o

_ n
. e x _e_x
= limi{1——} =e
n—->0o0 n
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2.1 Generalised Extreme value (GEV) distribution

The last line in the above simplification follows from the hint:

e X\" —e™*\)" —x
lim {1 — —} = lim {1 + ( )} —e" €
n—oo n n—oo n

This distribution is known as the standard Gumbel distribution.

The standard Gumbel distribution is a particular type of extreme value distribution.
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2.1 Generalised Extreme value (GEV) distribution

GEV distribution

More generally, whatever the underlying distribution of the data, the distribution of the
standardised maximum values will converge to a distribution called the generalised extreme
value (GEV) distribution as n increases, ie lim,,_, o, [F (B,x + a,)]" = H(x).

The cumulative distribution function of the GEV distribution is:

( 1
exp<—<1+y(x_a)) y) y+0
H(x) =+ B

ex e ( (x a)> 0
—eX — =
L p p B )4
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2.1 Generalised Extreme value (GEV) distribution

This distribution has three parameters:

e alocation parameter a

e ascale parameter 8 >0

e ashape parametery.

The parameters a and f just rescale (shift and stretch) the distribution. They are analogous
to (but do not usually correspond to) the mean and standard deviation.

The parameter y determines the overall shape of the distribution (analogous to the
skewness) and its sign (positive, negative or zero) results in three different shaped distributions.

18



2.1 Generalised Extreme value (GEV) distribution

1. Fréchet-type GEV distribution

For y > 0, the distribution is a Fréchet-type GEV distribution. Earlier, we derived the PDF as:

1

h(x) = %(1 + Y(xﬂ_ a)>_< ?) exp (— (1 + Y(xﬂ_ a))‘y)

Fréchet-type GEV distributions

PDFs of Fréchet-type GEV distributions, y = 0.5

0.01
0.009
0.008
0.007
0.006

hix) ¢.005
0.004
0.003
0.002
0.001

a=0,B=50

- = q=0,p=75
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2.1 Generalised Extreme value (GEV) distribution

2. Weibull-type GEV distribution

For y < 0, the distribution is a Weibull-type GEV distribution. The PDF is of the same form as the
Frechet-type GEV distribution, ie it is given by:

1 (x —a) _<1+%) (x —a) _%
h(X) =E<1+YT> exp —<1 +VT>

Weibull-type GEV distribution

PDFs of a Weibull-type GEV distributions, y = -0.5

0.010
0.009
0.008
0.007
hie) 0005
0.004
0.003
0.002
0.001
0.000

a=0,B=50

- = a=0,B=75
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2.1 Generalised Extreme value (GEV) distribution

3. Gumbel-type GEV distribution

When y = 0, the GEV distribution reduces to the Gumbel distribution. In this case, the PDF is

given by:
IO [CET N AR )
h(x) = ﬁexp( [ 5 + exp( 3 )D

PDFs of Gumbel-type GEV distributions, y=0

Gumbel-type GEV distributions

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

o a=0,B=50

- —a=0,p=75

0.001
0.000

-200 -150 -100 -50 O 50 100 150 200 250 300 350 400
X
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2.1 Choosing the form of the GEV distribution

®

GEV distributions (for the maximum value) corresponding to

common loss distributions

Type WEIBULL GUMBEL FRECHET
Shape parameter y <0 y=0 y>0
Underlying Beta Chi-square Burr
distribution Uniform Exponential F
Triangular Gamma Log-gamma
Lognormal Pareto
Normal t
Weibull
Range of permitted B p
values x<a_)/ —o<x< o X>Qa y

22
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- Question

CS2A S2021 Q1

An Analyst is assessing the risks of an equity portfolio and wishes to estimate the
probability that the portfolio will incur at least one daily loss exceeding 5% next
month.

Explain how a generalised extreme value distribution and the block maxima method
could be used to estimate this probability.

23



Solution

Collect daily returns and group into months

Take the maximum loss each month and remove all other data

Find the parameters for the GEV distribution

using maximum likelihood estimation

Calculate 1 - H(0.05), where H(x) 1s the cumulative distribution function of the GEV
distribution

which gives the probability that the maximum daily loss that month will exceed 5%

24



Peak Over Threshold Exceedances

Generalized Pareto Distribution

As an alternative to focusing on the maximum value, i

[ ] [ ] [ ] [ ] /\
we can consider the distribution of all the values amount

of the variable that exceed some (large) specified A

threshold, eg all claims exceeding £1 million. threshold
u

For large samples, whatever the underlying
distribution, the distribution of the threshold
exceedances will converge to the generalised Pareto
distribution.

This enables us to model the tail of a distribution by
selecting a suitably high threshold and then fitting a
generalised Pareto distribution to the observed
values in excess of that threshold.

@
® :6__;_9

O OOOO O

O

oo & ° %

Peak over threshold model
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Peak Over Threshold Exceedances

Generalized Pareto Distribution

Threshold exceedances

X-u/X>u where u is the threshold

The higher the value of u, the more extreme values we have of X. However, using a higher
threshold means that we have fewer values with which to fit the extreme value distribution.
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3 Peak Over Threshold Exceedances

Generalized Pareto Distribution - CDF

If the maximum possible value of X is xp < oo, the cumulative distribution function of the excess
is(for0<x<xp—u):

PX—u<sx,X>u)
N P(X > u)
_PX=sx+uX>u)
B P(X > u)
PX<x+u)—PX<u)

P(X >u)
F(x+u)—F(u)
T 1-FQ@)

Ex)=PX—-—u<sx|X>u)
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3 Peak Over Threshold Exceedances

Generalized Pareto Distribution - CDF

More generally we find that, whatever the underlying distribution of the data, the distribution of
the threshold exceedances will converge to a generalised Pareto distribution as the threshold u
increases, ie lim,,_, o F,(x) = G(x).

The generalised Pareto distribution is a two-parameter distribution with CDF:

( ( x -y
1-— 1+—> y #0
G(x) = ! vP

This distribution has two parameters:

e ascale parameter 8 >0
e ashape parameter y.
When y = 0, this distribution reduces to the exponential distribution.
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Measures of Tail Weights

There are a number of measures we can use to quantify the tail weight of a particular
distribution, ie how likely very large values are to occur.

Tail weight is a measure of how quickly the (upper) tail of a PDF tends to 0.
We will consider four ways of measuring tail weight:

1. the existence of moments

limiting density ratios

the hazard rate

> W N

the mean residual life.

29



4 Measures of Tail Weights

Existence of moments

Recall that the k th moment of a continuous positive-valued distribution with density function

f(x)is:
joo x®f(x)dx
0

If more number of non central moments exist, then that distribution has a lighter tail.

30



Measures of Tail Weights

Limiting density ratios
We can compare the thickness of the tail of two distributions by calculating the relative values of
their density functions at the far end of the upper tail.

We calculate this as:

. fx1(x)
lim =

« If the ratio equals o, then the numerator has a heavier tail.

- If the ratio equals 0, then the denominator has a heavier tail.

31



Measures of Tail Weights

Limiting density ratios

For example, if we compare the Pareto distributions with parameters a = 2 and a = 3 (both with
the same value of 1), we find that:

fa=2(x) { 2% 313 }

2
= lim (A +x) =

I = i -
e ) AR At Ut 3

This confirms that the distribution with &« = 2 has a much thicker tail.

If we compare the gamma distribution with the Pareto distribution, we find that the presence of
the exponential factor in the gamma density results in a limiting density ratio of zero, which
confirms that the gamma distribution has a lighter tail.
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Measures of Tail Weights

Hazard rate

The hazard rate of a distribution with density function f(x) and distribution function F(x) is
defined as:
it
) =T
We can interpret the hazard rate by analogy with u, , the force of mortality at age x .

- If the force of mortality increases as a person’s age increases, relatively few people will
live to old age (corresponding to a light tail).

 If, on the other hand, the force of mortality decreases as the person’s age increases,
there is the potential to live to a very old age (corresponding to a heavier tail).
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4 Measures of Tail Weights

Mean residual life

The mean residual life of a distribution with density function f(x) and distribution function F(x)
is defined as:

[0 O=0fO)dy _ [, {1 - FO)}dy
[ fdy 1= F@)

This function gives the expected remaining survival time given survival up until this point.

e(x) =

- If MRT is an increasing function of x, then it corresponds to fatter tail.

- If MRT is a decreasing function of x, then it corresponds to lighter tail.
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- Question

CS2A A2023 Q6

A hydroelectric company is managing a water reservoir created from a dam in a river valley. The
dam was originally chosen so that the water level would exceed a threshold of 50 metres in
about 2 days in every 300 days. In these extreme events, the excess water is left to escape the
reservoir so that the water level is kept below the safety 50-metre limit.

It is believed that the daily water level in the reservoir follows an exponential distribution with
mean p.

(i) Estimate the value of p. [3]
(i) Determine the expected threshold exceedance of the water level over the 50-metre
threshold. [2]

Contd..
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- Question

CS2A A2023 Q6

In order to better manage the excess water, it is now assumed that the excess water level follows
a Generalised Pareto distribution with scale parameter = 1.

(iii) Explain the circumstances in which the Generalised Pareto distribution would be preferred to
the exponential distribution. [2]

(iv) Estimate the value of the parameter y if the expected threshold exceedance is the same as
that in part (ii). [3]
[Total 10]
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Solution

(1)
Since the exponential distribution with parameter \lambda and with expectation
\mu=1/\lambda has tail probability

Exp(-x/ \mu ) then [1]
Exp(-50/A\mu)=2/300 so

-50/\mu =log(2/300)=-5.010635 [1]
So

\mu=-50/5.010635=9.978775 [1]
(i1)

Since the threshold exceedance distribution for the exponential distribution is the

same as the original distribution then [1]

[or since the exponential distribution is memoryless, then ...]
the random variable U=X-50|X>50 has the same expectation as above, 1.e. 9978775 [1]
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Solution

(111)

GPD is preferred if extreme weather events are becoming more likely [1]

and therefore the exceedance distributions are expected to have fatter tails than

those of the exponential [1]

modelling of the tails is seen as more important in a scenario such as this [1]

other sensible comments contrasting the GPD and the exponential [1]
| Total marks 4, maximum 2]

(iv)

If beta =1 the Pareto distribution will have expectation the same as the expected
exceedance amount

\gamma /(gamma -1)= 9.978775 [1]
or

\gamma = (gamma -1)*9.978775 [1]
\gamma= 9.978775/(9.978775-1)=1.111374 [1]

[Total 10]
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