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1.1

In this section, we deal with possible sources of non-stationarity and how to compensate for them.

Lack of stationarity may be caused by the presence of deterministic effects in the quantity being 

observed. 

We can identify three possible causes of non-stationarity: 

1. a deterministic trend (eg exponential or linear growth) 

2. a deterministic cycle (eg seasonal effect) 

3. the time series is integrated.

It is worth pointing out that this list is not exhaustive.



Detecting non-stationary series 
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1.2

• The most useful tools in identifying non-stationarity are the simplest: a plot of the series against 

t , and the sample ACF.

• Plotting the series will highlight any obvious trends in the mean and will show up any cyclic 

variation which could also form evidence of non-stationarity. This should always be the first step 

in any practical time series analysis.

• The sample ACF should, in the case of a stationary time series, ultimately converge towards zero 

exponentially fast,

• If the sample ACF decreases slowly but steadily from a value near 1, we would conclude that the 

data need to be differenced before fitting the model. If the sample ACF exhibits a periodic 

oscillation, however, it would be reasonable to conclude that there is some underlying cause of 

the variation.



Detecting non-stationary series 
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1.2

Example

Below is the ACF plotted for FTSE 100 Index.

The sample ACF is clearly non-stationary as the 

values decrease in some linear fashion; 

differencing is therefore required before fitting 

a stationary model.



Least squares trend removal
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1.3

The simplest way to remove a linear trend is by ordinary least squares. This is equivalent to 

fitting the model:

𝒙𝒕 = 𝒂 + 𝒃𝒕 + 𝒚𝒕

where 𝑎 and 𝑏 are constants and 𝑦 is a zero-mean stationary process. The parameters 𝑎 and 𝑏 

can be estimated by linear regression prior to fitting a stationary model to the residuals 𝑦𝑡.

Differencing

Differencing may well be beneficial if the sample ACF decreases slowly from a value near 1 

but has useful effects in other instances as well. If, for instance, 𝑥𝑡 = 𝑎 + 𝑏𝑡 + 𝑦𝑡, then:

𝛁𝒙𝒕 = 𝒃 + 𝛁𝒚𝒕

so that the differencing has removed the trend in the mean.



Seasonal Differencing
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1.4

Where seasonal variation is present in the data, one way of removing it is to take a 

seasonal difference.

Example 1

Suppose that the time series 𝑥 records the monthly average temperature in London. A model of 

the form:

𝑥𝑡 = 𝜇 + 𝜃𝑡 + 𝑦𝑡

might be applied, where 𝜃 is a periodic function with period 12 and 𝑦 is a stationary series. 

Then the seasonal difference of 𝑥 is defined as ∇12𝑥 𝑡 = 𝑥𝑡 − 𝑥𝑡−12 and we see that:

∇12𝑥 𝑡 = 𝑥𝑡 − 𝑥𝑡−12 = 𝜇 + 𝜃𝑡 + 𝑦𝑡 − 𝜇 + 𝜃𝑡−12 + 𝑦𝑡−12 = 𝑦𝑡 − 𝑦𝑡−12

is a stationary process.

We can then model the seasonal difference of x as a stationary process and reconstruct the 

original process x itself afterwards. 



Method of moving averages

8

1.5

The method of moving averages makes use of a simple linear filter to eliminate the effects of 

periodic variation. 

A linear filter is a transformation of a time series x (the input series) to create an output series y 

that satisfies:

𝑦𝑡 = σ𝑘=− ∞
∞ 𝑎𝑘  𝑥𝑡−𝑘



Method of seasonal means
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1.6
The simplest method for removing seasonal variation is to subtract from each observation the 

estimated mean for that period, obtained by simply averaging the corresponding observations in 

the sample.

Suppose that the time series 𝑥 records the monthly average temperature in London. A model of the 

form:                                                 𝑥𝑡 = 𝜇 + 𝜃𝑡 + 𝑦𝑡

might be applied, where 𝜃 is a periodic function with period 12 and 𝑦 is a stationary series. The term 

𝜃𝑡 contains the deviation of the model at time 𝑡 due to the seasonal effect. So:

𝑦𝑡 = 𝑥𝑡 − 𝜇 − 𝜃𝑡

When fitting the model to a monthly time series 𝑥 extending over 10 years from January 1990 the 

estimate for 𝜇 is ᪄𝑥 and the estimate for 𝜃January is:

ƶ𝜃January =
1

10
𝑥1 + 𝑥13 + 𝑥25 + ⋯ + 𝑥109 − ƶ𝜇

So, in this case, we can remove the seasonal variation by deducting the January average, 

᪄𝑥January =
1

10
𝑥1 + 𝑥13 + 𝑥25 + ⋯ + 𝑥109 , from all the January values.



Transformation of the data
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1.7

Diagnostic procedures such as an inspection of a plot of the residuals may suggest that even the 

best-fitting standard linear time series model is failing to provide an adequate fit to the data. 

Before attempting to use more advanced non-linear models, it is often worth attempting to 

transform the data in some straightforward way in an attempt to find a data set on which the 

linear theory will work properly.



Transformation of the data
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1.7

Variance-stabilising transformations

Transformations are most commonly used when a dependence is suspected between 

the variance of the residuals and the size of the fitted values. If, for example, the 

standard deviation of 𝑋𝑡+1 − 𝑋𝑡 appears to be proportional to 𝑋𝑡, then it would be 

appropriate to use the logarithmic transformation, to work on the time series 𝑌 =
ln 𝑋.



Transformation of the data
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1.7

Transformations to increase normality

In certain applications it may be found that most residuals are small and negative, 

with a few large positive values to offset them. This may be taken to indicate that the 

distribution of the error terms is non-normal, leading to doubts as to whether the 

standard time series procedures, designed for normal errors, are applicable. It may 

be possible to find a transformation which will improve the normality of the error 

terms of the transformed process, but care should be taken that this does not lead 

to instability in the variance. A further caution when using transformed data involves 

the final step of turning forecasts for the transformed process into forecasts for the 

original process, as some transformations introduce a systematic bias. 



Question
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The following time series model is being used to model monthly data:

(i) Perform two differencing transformations and show that the result is a moving average 

process which you may assume to be stationary. [3]

(ii) Explain why this transformation is called seasonal differencing. [1]

(iii) Derive the auto-correlation function of the model generated in part (i). [8]
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Identification of Time Series Processes
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2

2.1 Identification of MA(q) 

The distinguishing characteristic of 𝑀𝐴(𝑞) is that 𝜌𝑘 = 0 for all 𝑘 > 𝑞. A test for the 

appropriateness of an 𝑀𝐴(𝑞) model, therefore, is that 𝑟𝑘 is close to 0 for all 𝑘 > 𝑞. 

1. Plot 𝑟𝑘 vs k

2. Asymptotic distribution for 𝑟𝑘( for 𝑘 > 𝑞)

𝜌k ∼ N ൭0,1/n 1 + 2 ∗ ෍

𝑖=1

𝑞

𝜌i
2

Confidence Interval for 𝑟𝑘

= ±z𝛼/2 1/n ቌ1 + 2 ∗ ෍

𝑖=1

𝑞

𝜌i
2
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2.2 Identification of AR(p) 

The corresponding diagnostic procedure for an autoregressive model is based on the 

sample partial ACF, since the PACF of an AR (p ) is distinctive, being equal to zero for k 

> p.

1. Plot 𝜙𝑘
∧ vs k

2. Asymptotic distribution for 𝜙𝑘
∧( for 𝑘 > 𝑝)

𝜙k ∼ N(0,1/n)

Confidence Interval for 𝜙𝑘

= ±z𝛼/2 1/𝑛 ≈ ±2/ 𝑛
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2.3 Identification of WNP (White Noise Process) (Method 1) 

1. Calculate 𝑒𝑡 values using Backward forecasting

2. Plot 𝑒𝑡 against time

3. Asymptotic distribution for

𝜌k ∼ 𝑁(0,1/𝑛)
𝜙k ∼ 𝑁(0,1/𝑛)

Confidence Interval for both

= ±𝑧𝛼/2 1/𝑛 ≈ ±2/ 𝑛
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2.3 Identification of WNP (White Noise Process) (Method 2)

Portmanteau test by Ljung & Box

• Overall goodness of fit test

• H0 - residuals are WNP  𝑣/s H1 − not H0

• Model for WNP

𝑋𝑡 = 𝜇 + 𝑒𝑡

Test static = 𝑛(𝑛 + 2) σ𝑘=1
𝑚 𝑟𝑘

2

𝑛−𝑘
∼ 𝜒𝑚

2

for each m

• Decision criteria : Reject H0 at 𝛼% level of significance if

𝜒2  cal > 𝜒2 tab

This is a one-sided test. A large test statistic indicates that the data do not confirm to 

a white noise process.



Fitting a time series model using the Box-Jenkins 
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The Box-Jenkins approach allows one to find an ARIMA model which is reasonably simple and 

provides a sufficiently accurate description of the behavior of the historical data.

Main steps in the Box-Jenkins approach to modelling 

The main steps of the approach are: 

• tentative identification of a model from the ARIMA class 

• estimation of parameters in the identified model 

• diagnostic checks. 

If the tentatively identified model passes the diagnostic tests, the model is ready to be used for 

forecasting. If it does not, the diagnostic tests should indicate how the model ought to be 

modified, and a new cycle of identification, estimation and diagnosis is performed. 



Fitting a time series model using the Box-Jenkins 
methodology
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1. Tentative identification of a model from the ARIMA class 

An ARIMA (p,d,q) model is completely identified by the choice of non-negative integer values 

for the parameters p , d and q . The parameter d is the number of times we have to difference 

the time series x to convert it to some stationary level. 



Fitting a time series model using the Box-Jenkins 
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The following principles can be used to choose the appropriate value of 𝑑 :

1. A time series 𝑥 can be modelled by a stationary ARMA model if the sample autocorrelation 

function 𝑟𝑘 decays rapidly to zero with 𝑘. If, on the other hand, a slowly decaying positive 

sample autocorrelation function 𝑟𝑘 is observed, this should be taken to indicate that the time 

series needs to be differenced to convert it into a likely realisation of a stationary random 

process.

2. Let ƶ𝜎𝑑
2 denote the sample variance of the process 𝑧(𝑑) = ∇𝑑𝑥, ie the sample variance of the 

data values after they have been differenced 𝑑 times. It is normally the case that ƶ𝜎𝑑
2 first 

decreases with 𝑑 until stationarity is achieved and then starts to increase. Therefore, 𝑑 can be 

set to the value which minimises ƶ𝜎𝑑
2. This could be 𝑑 = 0 if the original time series 𝑥 is 

already stationary.
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Fitting an ARMA(p, q) model

Suppose now that the appropriate value for the parameter 𝑑 has been found, and the time 

series 𝑧𝑑+1, 𝑧𝑑+2, … , 𝑧𝑛  is adequately stationary. (Notice that a differenced series has 𝑑 fewer 

observation than the original series.) We shall assume throughout this section that the 

sample mean of the 𝑧 sequence is zero; if this is not the case, obtain a new sequence by 

subtracting ƶ𝜇 = ത𝒛 from each value in the sequence. We shall also assume, for the sake of 

simplicity in setting down the lower and upper limits of sums, that 𝑑 = 0.

In the framework of the Box-Jenkins approach we try to find an ARMA(𝑝, 𝑞) model which fits 

the data 𝑧.

If either the correlogram or the partial correlogram appears to be close to zero for sufficiently 

large k , an MA (q) or AR (p) model is indicated. Otherwise, we should look for an ARMA(p, q) 

model with non-zero values of p and q . 
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Fitting an ARMA(p, q) model

A good indicator for possible values of p and q in an ARMA p q (,) is the number of spikes in 

the ACF and PACF until some geometrical decay to zero is observed. 

For more complex models, we perform a trail and error method:

Eg  - ARMA(1,1)

      - ARMA(2,1)

      - ARMA(1,2)

Every additional parameter improves the fit of the model by reducing the residual sum of 

squares. Taking this to extremes, a model with n parameters could be found to fit the data 

exactly. 

How will take care of overfitting the model?



Fitting a time series model using the Box-Jenkins 
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Fitting an ARMA(p, q) model

The question of when to stop adding new parameters is addressed by Akaike's information 

criterion (AIC), which states that we should only consider adding an extra parameter if this 

results in a reduction of the residu sum of squares by a factor of at least 𝑒−2/𝑛, or 

alternatively, one can evaluate for each possible model the value of:

𝐴𝐼𝐶( model ) = log ƶ𝜎2 + 2 ×
 number of parameters 

𝑛

and choose as the most appropriate the one corresponding to the lowest such value.



Fitting a time series model using the Box-Jenkins 
methodology

27

3

2. Parameter Estimation

Once the values of 𝑝 and 𝑞 have been identified, the problem becomes to estimate the values 

of parameters 𝛼1, 𝛼2, … , 𝛼𝑝 and 𝛽1, 𝛽2, … , 𝛽𝑞 for the ARMA(𝑝, 𝑞) model:

𝑧𝑡 = 𝛼1𝑧𝑡−1 + 𝛼2𝑧𝑡−2 + ⋯ + 𝛼𝑝𝑧𝑡−𝑝 + 𝑒𝑡 + 𝛽1𝑒𝑡−1 + 𝛽2𝑒𝑡−2 + ⋯ + 𝛽𝑞𝑒𝑡−𝑞

Least squares estimation suggests itself; this is equivalent to maximum likelihood estimation 

if the 𝑒𝑡 may be assumed normally distributed.
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2. Parameter Estimation

In the case of a more general ARMA process we encounter the difficulty that the 𝑒𝑡 cannot be 

deduced from the 𝑧𝑡. For example, in the case of ARMA(1,1) we have:

𝑒𝑡 = 𝑧𝑡 − 𝛼1𝑧𝑡−1 − 𝛽1𝑒𝑡−1

an equation which can be solved iteratively for 𝑒𝑡 as long as some starting value 𝑒0 is assumed. 

For an ARMA(𝑝, 𝑞) the list of starting values is 𝑒0, … , 𝑒𝑞−1 .

The starting values need to be estimated, which is usually carried out by a recursive technique. 

First assume they are all equal to zero and estimate the 𝛼𝑖 and 𝛽𝑗 on that basis, then use 

standard forecasting techniques on the time-reversed process 𝑧𝑛, … , 𝑧1  to obtain predicted 

values for 𝑒0, … , 𝑒𝑞−1 , a method known as backforecasting. These new values can be used as 

the starting point for another application of the estimation procedure; this continues until the 

estimates have converged.

This is done by software packages.
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2. Parameter Estimation

The final parameter of the model is 𝜎2, the variance of the 𝑒𝑡, which may be 

estimated using:

ƶ𝜎2 =
1

𝑛
෍

𝑡=𝑝+1

𝑛

ƶe𝑡
2 =

1

𝑛
෍

𝑡=𝑝+1

𝑛

𝑧𝑡 − ƶ𝛼1𝑧𝑡−1 − ⋯ − ƶ𝛼𝑝𝑧𝑡−𝑝 − ƶ𝛽1 ƶe𝑡−1 − ⋯ − ƶ𝛽𝑞 ƶe𝑡−𝑞
2
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3. Diagnostic Checking

After the tentative identification of an ARIMA(𝑝, 𝑑, 𝑞) model and calculation of the estimates 

ƶ𝜇, ƶ𝜎, ƶ𝛼1, … , ƶ𝛼𝑝, ƶ𝛽1, … , ƶ𝛽𝑞 we have to perform diagnostic checking. The principle of this is that, if 

the ARMA(𝑝, 𝑞) model is a good approximation to the underlying time series process, then the 

residuals ƶ𝑒𝑡 will form a good approximation to a white noise process.

There is a set of checks to be performed:

• Inspection of the graph of the residuals

• Inspection of the sample autocorrelation functions of the residuals

• Counting turning points
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3. Diagnostic Checking

Inspection of the graph of the residuals

The visual inspection of the graph of the residuals against 𝑡 or the graph of ƶ𝑒𝑡 against 𝑧𝑡 can 

help to highlight a poorly fitting model. 

If any pattern is evident, whether in the average level of the residuals or in the magnitude of 

the fluctuations about 0 , this should be taken to mean that the model is inadequate.

Inspection of the sample autocorrelation functions of the residuals

If the SACF or SPACF of the sequence of residuals has too many values outside the range 2 N , 

we conclude that the fitted model does not have enough parameters and a new model with 

additional parameters should be fitted. 
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3. Diagnostic Checking

Counting turning points

If 𝑦1, 𝑦2, … , 𝑦𝑁 is a sequence of numbers, then we say that the sequence has a turning point at 

time 𝑘 if either 𝑦𝑘−1 < 𝑦𝑘 and 𝑦𝑘 > 𝑦𝑘+1, or 𝑦𝑘−1 > 𝑦𝑘 and 𝑦𝑘 < 𝑦𝑘+1.

If 𝑌1, 𝑌2, … , 𝑌𝑁 is a sequence of independent random variables with continuous distribution, 

then the probability of a turning point at time 𝑘 is 2/3, the expected number of turning points 

is 
2

3
(𝑁 − 2), and the variance is 

16𝑁−29

90
.

This is a result for a sequence of independent random variables. It is therefore usually applied 

to the residuals of the time series, not to the original time series itself, which will not be 

independent. 
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Consider the time-series model:

where et is white noise with mean 0 and variance 𝜎2.

(i) Derive the possible values of 𝑎 and 𝑏 for which the process yt is stationary and invertible. [4]

(ii) State the values of p and q for which yt is an ARMA(p, q) process. [1]

If 𝑏 = 0 the original model (A) reduces to

(iii) Derive the autocorrelation function for this model while stationarity is assumed to hold. [8]

An actuary attempts to fit the model (A) to some time series data but concludes that the simpler 

model (B) is more appropriate.

(iv) Discuss how this conclusion could have been reached. [4] [Total 17]
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Box-Jenkins approach to forecasting stationary time series

Using the Box-Jenkins approach, forecasting is relatively straightforward. Having fitted an 

ARMA model to the data 𝑥1, … , 𝑥𝑛  we have the equation:

𝑿𝒏+𝒌 = 𝝁 + 𝜶𝟏 𝑿𝒏+𝒌−𝟏 − 𝝁 + ⋯ + 𝜶𝒑 𝑿𝒏+𝒌−𝒑 − 𝝁 + 𝒆𝒏+𝒌 + 𝜷𝟏𝒆𝒏+𝒌−𝟏 + ⋯ + 𝜷𝒒𝒆𝒏+𝒌−𝒒

We will now look forward to forecasting for this series.
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Box-Jenkins approach to forecasting stationary time series

Forecasting future values of an ARMA process

The forecast value of 𝑋𝑛+𝑘 given all observations up until time 𝑛, known as the 𝑘-step ahead 

forecast and denoted ƶ𝑥𝑛(𝑘), is obtained from this equation by:

• replacing all (unknown) parameters by their estimated values;

• replacing the random variables 𝑋1, … , 𝑋𝑛 by their observed values 𝑥1, … , 𝑥𝑛;

• replacing the random variables 𝑋𝑛+1, … , 𝑋𝑛+𝑘−1 by their forecast values ƶ𝑥𝑛(1), … , ƶ𝑥𝑛(𝑘 − 1);

• replacing the innovations 𝑒1, … , 𝑒𝑛 by the residuals ƶ𝑒1, … , ƶ𝑒𝑛;

• replacing the random variables 𝑒𝑛+1, … , 𝑒𝑛+𝑘−1 by their expectations, 0 

For example, the one-step ahead and two-step ahead forecasts for an 𝐴𝑅(2) are given by:

ƶ𝑥𝑛(1) = ƶ𝜇 + ƶ𝛼1 𝑥𝑛 − ƶ𝜇 + ƶ𝛼2 𝑥𝑛−1 − ƶ𝜇

ƶ𝑥𝑛(2) = ƶ𝜇 + ƶ𝛼1 ƶ𝑥𝑛(1) − ƶ𝜇 + ƶ𝛼2 𝑥𝑛 − ƶ𝜇



Forecasting

38

4

Forecasting ARIMA processes

If 𝑋 is an ARIMA(𝑝, 𝑑, 𝑞) process, then 𝑍 = ∇𝑑𝑋 is ARMA(𝑝, 𝑞), so the techniques of Section 4.1 

can be used to produce forecasts and confidence intervals for future values of 𝑍. 

By reversing the differencing procedure these can be translated into forecasts of future values 

of 𝑋.

For example, suppose that 𝑋 is ARIMA(0,1,1).

Then 𝑍𝑛 = ∇𝑋𝑛 = 𝑥𝑛 − 𝑥𝑛−1 is ARMA(0,1), and 𝑥𝑛 = 𝑥𝑛−1 + 𝑧𝑛.

Hence 𝑋𝑛+1 = 𝑋𝑛 + 𝑍𝑛+1, and ƶ𝑥𝑛(1) = 𝑥𝑛 + ƶ𝑧𝑛(1).
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5.1

We can write a univariate time series in multivariate (or vector) form.

For example, the time series 𝑥𝑡 = 𝛼1𝑥𝑡−1 + 𝛼2𝑥𝑡−2 + 𝑒𝑡 + 𝛽𝑒𝑡−1 can be written as

𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

=
0 𝛼1 𝛼2

0 1 0
0 0 1

𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

+
1 𝛽 0
0 0 0
0 0 0

𝑒𝑡

𝑒𝑡−1

𝑒𝑡−2

ie 𝑋𝑡= 𝐴𝑥𝑡−1 + 𝐵𝑒𝑡

The advantage of the vector form is that it displays the Markov property.

The vector process is stationary if the eigenvalues 𝜆 of the matrix 𝐴 are all strictly less than 1 in 

magnitude. The eigenvalues are found by solving det(𝐴 − 𝜆𝑙) = 0 where 𝐼 is the identity matrix.



Cointegrated series

40

5.2

Two time series processes 𝑋 and 𝑌 are called cointegrated if:

(i) 𝑋 and 𝑌 are I(1) random processes

(ii) there exists a non-zero vector (called the cointegrating vector) (𝛼, 𝛽) such that 𝛼𝑋 + 𝛽𝑌 is 

stationary.

We might expect that two processes are cointegrated if one of the processes is driving the 

other or if both are being driven by the same underlying process.



Other non-linear, non-stationary time series

41

5.3

Other examples of time series include:

▪ bilinear models, which exhibit 'bursty' behavior:

𝑥𝑛 − 𝛼 𝑥𝑛−1 − 𝜇 = 𝜇 + 𝑒𝑛 + 𝛽𝑒𝑛−1 + 𝑏 𝑥𝑛−1 − 𝜇 𝑒𝑛−1

▪ threshold autoregressive models, which are used to model 'cyclical' behavior:

𝑥𝑛 = 𝜇 + ቊ
𝛼1 𝑥𝑛−1 − 𝜇 + 𝑒𝑛,  if 𝑥𝑛−1 ≤ 𝑑

𝛼2 𝑥𝑛−1 − 𝜇 + 𝑒𝑛,  if 𝑥𝑛−1 > 𝑑

▪ random coefficient, autogressive models:

𝑥𝑡 = 𝜇 + 𝛼𝑡 𝑥𝑡−1 − 𝜇 + 𝑒𝑡

where 𝛼1, 𝛼2, … , 𝛼𝑛  is a sequence of independent random variables.
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5.3

Other examples of time series include:

▪ autoregressive conditional heteroscedasticity (ARCH) models, which are used to model 

asset prices, where we require the volatility to depend on the size of the previous value: 

𝑥𝑡 = 𝜇 + 𝑒𝑡 𝛼0 + ෍

𝑘=1

𝑝

𝛼𝑘 𝑥𝑡−𝑘 − 𝜇 2



Question

43

CT6 S2015 Q11

Consider the following pair of equations:

(i) (a) Show that these equations can be represented as

where M and N are matrices to be determined.
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(b) Determine the values of β for which these equations represent a stationary bivariate 

time series model. [9]

(ii) Show that the following set of equations represents a VAR(p) (vector auto regressive) 

process, by specifying the order and the relevant parameters:[3]
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