Time: 2 hours Total Marks: 60 marks

Note:

- 1. The candidate has option to either attempt question 4A or question 4B. Rest all questions are mandatory.
- 2. Numbers to the right indicate full marks.
- 3. The candidates will be provided with the formula sheet and graph papers (if required) for the examination.
- 4. Use of approved scientific calculator is allowed.

Q1.A (5 Marks)

Bornhuetter - Ferguson:

- The first accident year is fully run off.
- The estimated loss ratio is correct.
- Payments from each accident year will develop in the same way.
- Inflation is not allowed for explicitly, rather it is allowed for implicitly as a weighted average of past inflation.

Average Cost Per Claim:

- The first accident year is fully run off.
- The average cost per claim in each development year is a constant proportion in monetary terms of the ultimate average cost per claim for each accident year.
- The number of claims in each development year is a constant proportion in of the ultimate number of claims for each accident year.
- Inflation is not allowed for explicitly, rather it is allowed for implicitly as a weighted average of past inflation.

Time: 2 hours Total Marks: 60 marks

Q1.B (5 Marks)

In usual notations, we start with:

$$\lambda + cR = \lambda M_x(R)$$

$$= \lambda \int_0^M \exp \exp(Rx) f(x) dx$$

$$\leq \lambda \int_0^M \left(\frac{x}{M} \exp \exp(RM) + 1 - \frac{x}{M} \right) f(x) dx$$

(using the given inequality)

$$\leq \frac{\lambda}{M} \exp exp(RM) m_1 + \lambda - \frac{\lambda}{M} m_1$$

$$\frac{c}{\lambda m_1} \le \frac{1}{RM} (\exp exp (RM) - 1) = 1 + \frac{RM}{2} + \frac{(RM)^2}{3!} + \dots < 1 + \frac{RM}{2} + \frac{(RM)^3}{3!} + \dots$$

Hence,

$$R > \frac{1}{M} log(\frac{c}{\lambda m_1})$$

Time: 2 hours Total Marks: 60 marks

Q1.C (5 Marks)

Let X be a random variable representing the claim amounts from a portfolio of Fire Insurance policies. Let the pdf of X be given by:

$$f(x) = \frac{\alpha \beta \gamma^{\alpha} x^{\beta - 1}}{\left(\gamma + x^{\beta} \right)^{\alpha + 1}} ; x > 0$$

Derive an expression for the k^{th} raw moment of X.

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \frac{\alpha \beta \gamma^{\alpha} x^{\beta - 1}}{(\gamma + x^{\beta})^{\alpha + 1}} dx$$

Let,

$$\frac{\lambda}{\lambda + x^{\gamma}} = t$$

Then,

$$E(X^{k}) = \alpha \lambda^{\frac{k}{\gamma}} \int_{0}^{1} (1 - t)^{\frac{k}{\gamma}} t^{\alpha - 1 - (\frac{k}{\gamma})} dx$$
...(1)

Using Beta distribution, we have:

$$\int_{0}^{\infty} x^{\alpha - 1} (1 - x)^{\beta - 1} dx = (\Gamma \alpha + \Gamma \beta) / (\Gamma (\alpha + \beta))$$

Comparing it with (1), we have:

$$E(X^k) = \frac{\lambda^{\frac{k}{\gamma}} \left(\Gamma\left(\alpha - \frac{k}{\gamma}\right)^* \Gamma\left(\frac{k}{\gamma} + 1\right) \right)}{\Gamma\alpha}$$

Time: 2 hours Total Marks: 60 marks

Q2.A (5 Marks)

Assumption:

Failure between vehicle(s) are independent of each other.

Given the information on the prior distribution:

$$\frac{\alpha}{\alpha+\beta} = 0.050$$

$$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.0015$$

Solving the above two equations, we get:

$$\alpha = 1.53333$$

$$\beta = 29.1333$$

Now, the prior PDF is proportional to:

$$p^{0.5333} * (1 - p)^{28.1333}$$

Likelihood is given by (based on Binomial Distribution):

$$L \propto p^{75} * (1 - p)^{56000-75}$$

Hence, the posterior PDF is proportional to:

$$p^{75.5333} * (1 - p)^{55953.1333}$$

This has the form of a beta distribution PDF with parameters alpha = 75.53333 and beta = 55,953.1333

Time: 2 hours Total Marks: 60 marks

Q2.B (5 Marks)

Claims on a household insurance policy is said to follow Poisson distribution.

Creating a frequency table from the claims dataset, following is the information on the claims reported among the portfolio of 1,000 policies:

Claim Count	% of policies
0	26.6%
1	37.1%
2	21.2%
3	11.1%
4	3.2%
5	0.7%
6	0.1%

Perform a chi-square Goodness of Fit test to check of the statement made on the claim count distribution holds true.

You should clearly state the Hypothesis and your conclusion.

H0: Claim Count follows Poisson Distribution

H1: Not H0

$$\hat{\lambda}=\,1.\,297$$

X	Oi	Pi	Ei	(Oi - Ei)^2 / Ei
0	26 6	0.2734	273.35	0.1977
1	37 1	0.3545	354.54	0.7646
2	21 2	0.2299	229.92	1.3962
3	111	0.0994	99.40	1.3536
4	32	0.0322	32.23	0.0017
5	8	0.0106	10.57	0.6232
			Total	4.3368

Chi-Sq Test Statistic = 4.3368

Chi-Sq Tab Value = Chi-Sq (5%, 6 - 1 - 1) = 9.4877

Since, Chi-Sq Test Statistic < Chi-Sq Tab Value, we have insufficient evidence to Reject H0.

Time: 2 hours Total Marks: 60 marks

Hence, the claim holds true that the distribution of Claim Count follows Poisson Distribution.

Time: 2 hours

Total Marks: 60 marks

Lundberg's inequality states that:

$$\psi(U) \le exp(-RU)$$

Where:

- U is the insurer's initial surplus.
- $\psi(U)$ is the probability of ultimate ruin.
- R is a parameter associated with a surplus process known as the adjustment coefficient. Its value depends upon the distribution of aggregate claims and on the rate of premium income.

We need to solve the equation:

$$\lambda + cR = \lambda M_{\chi}(R)$$

Therefore, in usual notations:

$$R = \frac{Rate^* \theta}{1+\theta}$$

Where Rate: the parameter of exponential distribution

Substituting the values, we get:

R = 0.170689655

Time: 2 hours Total Marks: 60 marks

Q3.A (5 Marks)

$$\overline{X} = 157.175$$

 $E(s^2(\theta)) = 164.55$

$$V(m(\theta)) = 887.59$$

Z = 0.981798

Credibility Premium =

Risk 1: 153.8 * Z + (1 - Z) * 157.175 = 158.8614Risk 2: 147.9 * Z + (1 - Z) * 157.175 = 148.0688Risk 3: 127.9 * Z + (1 - Z) * 157.175 = 128.43285Risk 4: 199.1 * Z + (1 - Z) * 157.175 = 198.3369

Time: 2 hours Total Marks: 60 marks

Q3.B (5 Marks)

Let Y = (1 + j%) * X

$$F[Y \le y] = F\left[X \le \frac{y}{1+j\%}\right] = 1 - exp(-\lambda * \frac{y}{1+j\%})$$

Therefore, Y ~ $\exp(\lambda/(1 + j\%))$

If k = (1 + j%), then $Y \sim \exp(\lambda/k)$

$$L \propto \left(e^{-\lambda M}\right)^{34} \left(e^{-\frac{\lambda M}{k}}\right)^{41} \left(\lambda^{21}\right) \left(e^{-\lambda * 51,675}\right) \left(\frac{\lambda}{k}\right)^{9} \left(e^{-\frac{\lambda}{k} * 86,455}\right)$$

Where M = \$3,500

$$L \propto \lambda^{30} * \exp exp \left(-34\lambda M - \frac{41\lambda M}{k} - \lambda * 51,675 - \frac{\lambda}{k} * 86,455 \right)$$

Take log and differentiate w.r.t λ :

 $d Log L / d\lambda = 0$

Solving the equation, we get:

$$\hat{\lambda} = \frac{30}{34M + \frac{41M}{k} + 51,675 + \frac{86,455}{k}}$$

Time: 2 hours Total Marks: 60 marks

Q3.C (5 Marks)

1.) (2 Marks)

For Pareto distribution,

$$10,000 = \frac{\lambda}{\alpha - 1}$$

$$30,000^2 = \frac{\alpha \lambda^2}{(\alpha - 1)^2 (\alpha - 2)}$$

Solving the above two equations simultaneously, we get:

$$9 = \frac{\alpha}{\alpha - 2}$$

$$9\alpha - 18 = \alpha$$
$$\alpha = \frac{18}{8}$$

$$\alpha = 2.25$$
 $\lambda = 12,500$

2.) (3 Marks)

$$V(S) = \lambda * m_2 = 5 * [V(X) + (E(X))^2] = (70,710.67812)^2$$

 $SD(S) = 70,710.68$

Time: 2 hours Total Marks: 60 marks

Q4.A (15 Marks)

1.) (3 Marks)

Cumulative Incurred Triangle:

UW Year x DY	0	1	2	3
2019	1,49 6	2,46 1	3,27 6	4,04 9
2020	1,06 8	1,81 1	2,42 4	
2021	1,59 3	2,53 1		
2022	1,10 5			

DY	0 to 1	1 to 2	2 to 3
DF	1.6365	1.3343	1.2360

UW Year x DY	0	1	2	3	Ultimate
2019	1,49 6	2,461	3,276	4,049	4,049
2020	1,06 8	1,811	2,424	2995.96 3	2,996
2021	1,59 3	2,531	3377.03 7	4173.87 7	4,174
2022	1,10 5	1808.35 1	2412.82 8	2982.15 5	2,982
				Total	14,201.0 0

2.) (5 Marks)

UW Year x DY	0	1	2	3
2019				
Actual	1,496	965	815	773
Fitted	1,496	952	818	771
Error	-	12.8	-3.4	2.1
2020				
Actual	1,068	743	613	
Fitted	1,068	680	584	
Error	-	63.2	28.7	
2021				

Time: 2 hours Total Marks: 60 marks

Actual	1,593	938	
Fitted	1,593	1,014	
Error	-	-75.9	

Overall, the error seems to be increasing in magnitude in the latest UW Years.

Time: 2 hours Total Marks: 60 marks

3.) (3 Marks)

- Claims inflation may increase suddenly.
- Office expenses may also increase (if these are allowed for in the calculations).
- Weather patterns may change, altering the balance between short tail and long tail claims.
- The characteristics and behaviour of the insured lives in the portfolio may change over time.
- Catastrophe claims may occur.
- Underwriting procedures may change.

4.) (4 Marks)

DY	0 to 1	1 to 2	2 to 3
DF	1.6365	1.3343	1.236
Cumulative DF	2.6989	1.6492	1.236
% Developed	37.05 %	60.64 %	80.91 %

- Yes, modification to the claims incurred data is required for the pricing project.
- As we see from the above table, the cohort is not 100% developed even for UW Year 2019 as at end of 2022 (only 81% of the same is developed).
- Hence, it is less likely than policies belonging to UW Year 2018 2019 will be 100%.
- The adjustment required may be substantial and cannot be ignored.
- More Claims data from historical years needs to be evaluate to ensure more clarity on the adjustment required.

OR

Time: 2 hours

Total Marks: 60 marks

Q4.B (15 Marks)

No, the statement 'Exponential Distribution is always the best distribution when compared to Weibull Distribution' is NOT true.

2.) (3 Marks)

- Weibull reduces down to Exponential when y = 1
- Weibull distribution provides more flexibility in the tails of the distribution.
- Given the losses are model for Motor Insurance, the tail maybe heavy / light, which the Exponential distribution may not account for.
- Hence, underestimating the large losses.

CDF of Weibull distribution with parameters c = 2 and $\gamma = 0.25$ $1 - F[5] = \exp(-2*5^{\circ}(0.25)) = 0.05025$

CDF of Weibull distribution with parameters c = 2 and $\gamma = 1.25$ $1 - F[5] = \exp(-2*5^{(1.25)}) = 3.20467 * 10^{(-7)}$

CDF of Weibull distribution with parameters c = 2 and $\gamma = 1$ $1 - F[5] = \exp(-2*5^{\circ}(1)) = 4.53999 * 10^{\circ}(-5)$

When y = 1, the PDF of Weibull reduces down to Exponential Distribution.

For different Insurance products, the tails can be heavy / light and will be of importance.

Here, we see that for y = 0.25, the tail is heavier as compared to the tail when $\gamma = 1$

Here, we see that for $\gamma = 1.25$, the tail is lighter as compared to the tail when $\gamma = 1$

Hence, Weibull distribution provides more flexibility in the tails of the distribution.

4.) (5 Marks)

Using 'Methods Of Percentiles' find the parameter estimates given the summary information from the loss data:

Mean (in millions): 0.484173 0.0647711 • Variance (in millions): • First Quartile (in millions): 0.292387 Second Quartile (in millions): 0.451039 • Third Quartile (in millions): 0.645018

Time: 2 hours Total Marks: 60 marks

Time: 2 hours Total Marks: 60 marks

$$F(0.292387) = 1 - \exp exp \left(-c * 0.292387^{\gamma}\right) = 0.25$$

 $F(0.645018) = 1 - \exp exp \left(-c * 0.645018^{\gamma}\right) = 0.75$

$$1 - F(0.292387) = \exp \exp \left(-c * 0.292387^{\gamma}\right) = 0.75$$

$$1 - F(0.645018) = \exp \exp \left(-c * 0.645018^{\gamma}\right) = 0.25$$

Taking log on both sides, we have:

$$-c * 0.292387^{Y} = \log \log (0.75) \dots (1)$$
$$(-c * 0.645018^{Y}) = \log(0.25) \dots (2)$$

Dividing (1) by (2):

$$0.20752 = 0.453300^{\gamma}$$

 $\gamma = 1.987527$
 $c = 3.31387$

Median =
$$\left(\frac{\ln \ln (2)}{c}\right)^{1/\gamma} = 0.4551$$

The empirical median = 0.451039.

This is close to the Median we calculated above.

Hence, Weibull distribution is possibly / may be a good fit for the given data.