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2 Generating Functions - Recap

Moment Generating Functions - MGF

« A moment generating function (MGF) can be « A cumulant generating function (CCF) takes the
used to generate moments (about the origin) of moment of a sequence of numbers that
the distribution of a random variable (discrete or describes the distribution in a useful, compact
continuous). way.

* Although the moments of most distributions can * The first cumulant is the mean, the second the
be determined directly by evaluation using the variance, and the third cumulant is the skewness
necessary integrals or summation, utilizing or third central moment.

moment generating functions sometimes
provides considerable simplifications.



3 Loss Distributions

1. The frequency of claim amounts when plotted

against size might look like this:
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2. The statistical distributions in this chapter are used to
approximate this distribution, which is called a loss
distribution. For example, we might decide to use a loss
distribution like this as an approximation to the claims arising in
the graph besides:
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Loss Distributions

At a first level, it can be assumed that the claims arise as realizations from a known distribution. For example, it
may be possible to assume that the logarithm of the claim amount follows, to a reasonable approximation, a
normal distribution with known mean and known standard deviation.

In practice the exact claims distribution will hardly ever be known. At this second level a standard method of
proceeding is to assume that the claims distribution is a member of a certain family. The parameters of the
family must now be estimated using the claim amount records by an appropriate method such as maximum

likelihood.

Many studies have been made of the kind of distribution that can be used to describe the variation in claim

amounts.
The typical pattern is as shown in the histogram above, with a few small claims, rising to a peak, then tailing

off gradually with a few very large claims.

The general conclusion is that claims distributions tend to be positively skewed and long tailed.



3.1 Loss Distributions

The exponential distribution

A random variable X has the exponential distribution with parameter 2 > 0 if it has CDF:
Fx)=1—e ™ x>0

In that case we write X ~ Exp(4).
The PDF is:

fx) =2 x>0

1

The mean and variance are — and — respectively.

1
A A2
The MGF is:

-1

M(t)=(1—%) <2



3.2 Loss Distributions

The gamma distribution

The random variable X has a gamma distribution with parameters « > 0 and 1 > 0 if it has PDF:

AC(
f(x) = @xa_l e x>0
In that case we write X ~ Ga(a, 7).
The mean and variance of X are:
E(X) = a
a
var(X) = 1z

t -
MX(t)z(l—z) ,fort < A



3.2 Loss Distributions

Relationship between gamma and chi-squared distributions

If X ~ Gamma(a, A) and 2a is an integer, then:

2Ax ~ X%a



3.3 Loss Distributions

The normal distribution

X ~N(uo?)
Moments:
E(X)=n
Var (X) = o*
The MGF is:

My (t) = e'/2t’

The normal distribution arises in a variety of contexts. It is of limited use for modelling loss distributions
because of its symmetry (as loss distributions tend to be positively skewed).
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3.4 Loss Distributions

The lognormal distribution

The definition of the lognormal distribution is very simple: X has a lognormal distribution if log X has a
normal distribution.

When X ~ log N(u,0%),then Y = log X ~ N(u,0?)

E(X) — eﬂ+%0'2

2
2 2 2 2 2 2
Val‘(X) — 62u+20' (eu+1/20 ) — 62u+20 62u+a — 62u+0' (ea 1)
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3.5 Loss Distributions

The two-parameter Pareto distribution

A random variable X has the Pareto distribution with parameters a > 0 and 1 > 0 if it has CDF:

A a
F(X)zl—(“_—x) ,X>O

In that case we write X ~ Pa(a, A).

It is easily checked by differentiating F(x) with respect to x that the Pareto distribution has PDF:

fx) = ar” , x>0
(A + x)atl

gmatl 1% t=*1*° al 2
E(X) = aA® 1 e — A=
—a+ 1, —al,
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3.5 Loss Distributions

The two-parameter Pareto distribution
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3.6 Loss Distributions

The Burr distribution

The CDF of the Pareto distribution Pa(a, 1) is:

/10.'
F(x)=1 —m,x >0
A further parameter Y > 0 can be introduced by setting:
Aa
F(x)=1- (/1+xy)a,x >0

This is the CDF of the transformed Pareto or Burr distribution. The additional parameter gives extra flexibility
when a fit to data is required.
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3.7 Loss Distributions

The three-parameter Pareto distribution

The PDF of the Pareto distribution Pa(a, A) is:
ACZ

x>0

X) = )
) = Gy e
Another generalization of the Pareto distribution is to add a further parameter k so that the PDF becomes:

_T(a+kar xt

JO=Trm aroer ©> 0

The three-parameter Pareto distribution is equivalent to the two-parameter Pareto distribution when
k=1.
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3.8 Loss Distributions

The Weibull distribution

This distribution is called the Weibull distribution, a very flexible distribution, which can be used as a model
for losses in insurance, usually with y < 1. A random variable X has a Weibull distribution with parameters
c>0andy > 0ifit has CDF:

F(x)=1—exp(—cx¥), x>0

In that case we write X ~ W(c, y). (Note the change from A to c; this is the notation used in the Tables for
Actuarial Examinations).

The PDF of the W (c,y) distribution is:

f(x) = cyx¥ texp(—cx?),x > 0
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3.8 Loss Distributions

The Weibull distribution - Graph
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Methods of Estimation

Practically, we will not have a ready distribution for claims.

We need to fit a distribution to the available data.

For this we will need to estimate the parameters of such distributions.

Methods of estimation
1. Method of moments
2. Maximum Likelihood Estimator

3. Method of Percentiles
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4.1 Methods of Moments

For a distribution with r parameters, the moments are as follows:

n
1 i
mj:HE X, j=1,2..r
i=1

where:
m; = E(X/ | §), a function of the unknown parameter, 6, being estimated

n = the sample size
x; = the ith value in the sample

The estimate for the parameter, 6, can be determined by solving the equation above.

Where there is more than one parameter, they can be determined by solving the simultaneous
equations for each m,;.
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Question

CT6 September 2012 Q4

Claims arising on a particular type of insurance policy are believed to follow a Pareto distribution. Data for the
last several years shows the mean claim size is 170 and the standard deviation is 400.

(i) Fit a Pareto distribution to this data using the method of moments. [4]

(ii) Calculate the median claim using the fitted parameters and comment on the result. [3]
[Total 7]
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Solution

(1) For the Pareto distribution with parameters o, A as per the tables we have:

A

E(X)=—"—

And
ar’ 7 o

Var(X)= i =E(X)" ——

(a-1)"(a-2) o-2
And so

a-2

E(X*)=var(X)+E(X)’ =E(X)2( “2 +1J=E(X)2(2a_2]
The observed values we are trying to fit are And so

E(X)=170 2-2x%x6.53633
15()(2)=4002 +170% = 434.6262 o= 2 2.5.3633) =2.441

So we have

And finally A =1.441x170 =244.95

20-2  E(X?) 434626

=== - =6.53633
a-2  E(X) 170
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Solution

(1)  We must solve

2.441
0.5=1— 244 95
244 95+ x

Re-arranging and taking roots gives

e 244 9
0.52:441 = (.7527965 = —5
244 95+ x
And so
. 244 95-244.95%x0.7527965 _80.44

0.7527965

So the median 1s significantly lower than the mean. This demonstrates how
skew the Pareto distribution is.
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4.2

Maximum Likelihood
Estimation

*  Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given
distribution, using some observed data.

* Using a limited sample of the population, we find particular values of the mean and variance such
that the observation is the most likely result to have occurred.

* For this we define a likelihood function.
 The likelihood function of a random variable, X, will give us the probability (or PDF) using a

hypothetical parameter, 8.

* The maximum likelihood estimate (MLE) is that parameter which gives the highest probability (or
PDF), i.e. that maximizes the likelihood function.
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4.2

Maximum Likelihood
Estimation

Step 1
the likelihood function L(8) can be expressed as:

n
L(O) = 1_[ P(X = x; | 8) for a discrete random variable, x
i=1
or:

n
L(O) = 1_[ f(x; | 8) for a continuous random variable, x
i=1

To determine the MLE the likelihood function needs to be maximized.
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4.2

Maximum Likelihood
Estimation

Step 2
Often it is practical to consider the log-likelihood function:

n
1(6) =logL(0) = Z logP(X = x; | 0) for a discrete random variable, X

=1
or.

n
1(6) =logL(0) = Z log f(x; | 8) for a continuous random variable, x

=1

Step 3
If 1(8) can be differentiated with respect to 6, the MLE, expressed as 0, satisfies the expression:

16y =0

Where there is more than one parameter, the MLEs for each parameter can be determined by taking partial
derivatives of the log-likelihood function and setting each to zero.
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Question

CT6 September 2013 Q8

The number of claims per month Y arising on a certain portfolio of insurance policies is to be modelled using
a modified geometric distribution with probability density given by

y-1
) e . |
(1+a)’

p(y

where a is an unknown positive parameter.
The most recent four months have resulted in claim numbers of 8, 6, 10 and 9.

(i) Derive the maximum likelihood estimate of a [5]
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Solution

(1)

We have 4 years of observations such that y, + y, + y; + y, =33. The
likelihood function is then:

1 a33—4 a29

I li[ ali”
=1

Lrlra) (1+a)P 1+
The log-likelihood is then:
[=29loga—33log(l+a)

Taking its derivative w.r.t. o and equation it to zero we have:

% |

a l+o
29(1+a) =33

which implies that 29 = 4a Differentiating the log likelihood again gives —

therefore G = g =725 negative at &. =7.29.
4

29

33

4
2

a

(1 +oc)2

which 1s
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4.3 The method of percentiles

The method involves equating selected sample percentiles to the distribution function; for example,
equate the sample quartiles, the 25th and 75th sample percentiles, to the population quartiles.

This corresponds to the way in which sample moments are equated to population moments in the method
of moments. This method will be referred to as the method of percentiles.

In a similar fashion, when using the method of percentiles, the median would be used if there were one
parameter to estimate.

Example: The distribution function of the W(c, y) distribution is an elementary function, and a simple
method of estimation of both ¢ and y is based on this method.
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Question

CT6 September 2010 Q3

An underwriter has suggested that losses on a certain class of policies follow a Weibull distribution. She
estimates that the 10th percentile loss is 20 and the 90th percentile loss is 95.

(i)  Calculate the parameters of the Weibull distribution that fit these percentiles. [3]

(i)  Calculate the 99.5th percentile loss. [2] [Total 5]
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Solution

(1) Let the parameters be ¢ and y as per the tables.

Then we have:
1-e 2 —01s0 ¢ =09 andso cx20" =-—log0.9 (A)

And similarly ¢x95" =-1log0.1 (B)

.
(A) divided by (B) gives (éj = log0.7 =0.0457575
95 log0.1

Socion log 0.0457575 19795337

lo (Ej

%95

s ns log0.9

And substituting into (A) we have ¢ =— =0.000280056

201.9795337
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Solution

(i)  The 99.5" percentile loss is given by

1.9795337

So that —0.000280056x'77°>337 =10g0.005

o( log 0.005
&1 Z0.000280056
1.9795337

j =4.97486366

logx =

So x = e4.97486366 — 144773
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5 Goodness of fit tests

One way of testing whether a given loss distribution provides a good model for the observed claim amounts
is to apply a chi-squared goodness-of-fit test.

(0-E)?

Recall that the formula for the test statistic is ), E

- where:

e O is the observed number in a particular category
e Eisthe corresponding expected number predicted by the assumed probabilities

e the sum is over all possible categories.

Under the null hypothesis (that the model is correct), the test statistic has a chi-squared distribution.

A high value for the total indicates that the overall discrepancy is quite large and would lead us to reject the
model.
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