

Subject:

Chapter:

Category:

1. CT6 September 2010 Q3

An underwriter has suggested that losses on a certain class of policies follow a Weibull distribution. She estimates that the 10th percentile loss is 20 and the 90th percentile loss is 95.

- (i) Calculate the parameters of the Weibull distribution that fit these percentiles. [3]
- (ii) Calculate the 99.5th percentile loss. [2] [Total 5]

2. CT6 September 2010 Q7

An insurance company has a portfolio of policies under which individual loss amounts follow an exponential distribution with mean $1/\lambda$. There is an individual excess of loss reinsurance arrangement in place with retention level 100.

In one year, the insurer observes:

- 85 claims for amounts below 100 with mean claim amount 42; and
- 39 claims for amounts above the retention level.
- (i) Calculate the maximum likelihood estimate of λ . [5]
- (ii) Show that the estimate of λ produced by applying the method of moments to the distribution of amounts paid by the insurer is 0.011164. [5] [Total 10]

3. CT6 September 2010 Q10

An insurance company has a portfolio of 10,000 policies covering buildings against the risk of flood damage.

(i) State the conditions under which the annual number of claims on the portfolio can be modelled by a binomial distribution B(n, p) with n = 10,000. [3]

These conditions are satisfied and p = 0.03. Individual claim amounts follow a normal distribution with mean 400 and standard deviation 50. The insurer wishes to take out proportional reinsurance with the retention α set such that the probability of aggregate payments on the portfolio after reinsurance exceeding 120,000 is 1%.

(ii) Calculate α assuming that aggregate annual claims can be approximated by a normal distribution. [7]

This reinsurance arrangement is set up with a reinsurer who uses a premium loading of 15%.

(iii) Calculate the annual premium charged by the reinsurer. [2]

Unit 1

As an alternative, the reinsurer has offered an individual excess of loss reinsurance arrangement with a retention of M for the same annual premium. The reinsurer uses the same 15% loading to calculate premiums for this arrangement.

(iv) Show that the retention M is approximately 358.50. [4]

[You may wish to use the following formula which is given on page 18 of the Tables:

$$\int_{L}^{U} x f(x) dx = \mu [\Phi(U') - \Phi(L')] - \sigma[\phi(U') - \phi(L')]$$

Where
$$L^{'} = \frac{L-\mu}{\sigma}$$
 and $U^{'} = \frac{U-\mu}{\sigma}$

Here $\Phi(z)$ is the cumulative density function of the N(0,1) distribution and $\varphi(z) = \frac{e^{-\frac{z}{2}}}{\sqrt{2\pi}}$ [Total 16]

4. CT6 April 2011 Q10

The number of claims on a portfolio of insurance policies has a Poisson distribution with mean 200. Individual claim amounts are exponentially distributed with mean 40.

The insurance company calculates premiums using a premium loading of 40% and is considering entering into one of the following re-insurance arrangements:

- A. No reinsurance.
- B. Individual excess of loss insurance with retention 60 with a reinsurance company that calculates premiums using a premium loading of 55%.
- C. Proportional reinsurance with retention 75% with a reinsurance company that calculates premiums using a premium loading of 45%.
- (i) Find the insurance company's expected profit under each arrangement. [6]
- (ii) Find the probability that the insurer makes a profit of less than 2000 under each of the arrangements using a normal approximation. [8] [Total 14]

5. CT6 September 2011 Q3

Loss amounts under a class of insurance policies follow an exponential distribution with mean 100. The insurance company wishes to enter into an individual excess of loss reinsurance arrangement with retention level M set such that 8 out of 10 claims will not involve the reinsurer.

(i) Find the retention M. [2]

For a given claim, let X_I denote the amount paid by the insurer and X_R the amount paid by the reinsurer.

(ii) Calculate $E(X_I)$ and $E(X_R)$. [3]

Unit 1

[Total 5]

6. CT6 September 2011 Q7

A portfolio of insurance policies contains two types of risk. Type I risks make up 80% of claims and give rise to loss amounts which follow a normal distribution with mean 100 and variance 400. Type II risks give rise to loss amounts which are normally distributed with mean 115 and variance 900.

- (i) Calculate the mean and variance of the loss amount for a randomly chosen claim. [3]
- (ii) Explain whether the loss amount for a randomly chosen claim follows a normal distribution. [2] The insurance company has in place an excess of loss reinsurance arrangement with retention 130.
- (iii) Calculate the probability that a randomly chosen claim from the portfolio results in a payment by the reinsurer. [3]
- (iv) Calculate the proportion of claims involving the reinsurer that arise from Type II risks. [2] [Total 10]

7. CT6 April 2012 Q3

Claim amounts on a certain type of insurance policy follow a distribution with density

$$f(x) = 3cx^2 e^{-cx^3}$$
 for x>0

where c is an unknown positive constant. The insurer has in place individual excess of loss reinsurance with an excess of 50.

The following ten payments are made by the insurer:

- Losses below the retention: 23, 37, 41, 11, 19, 33
- Losses above the retention: 50, 50, 50, 50

Calculate the maximum likelihood estimate of c. [6]

8. CT6 April 2012 Q7

The numbers of claims on three different classes of insurance policies over the last four years are given in the table below.

	Year 1	Year 2	Year 3	Year 4	Total
Class 1	1	4	5	0	10
Class 2	1	6	4	6	17
Class 3	5	6	4	9	24

Unit 1

The number of claims in a given year from a particular class is assumed to follow a Poisson distribution.

- (i) Determine the maximum likelihood estimate of the Poisson parameter for each class of policy based on the data above. [5]
- (ii) Perform a test on the scaled deviance to check whether there is evidence that the classes of policy have different mean claim rates and state your conclusion. [5] [Total 10]

9. CT6 September 2012 Q4

Claims arising on a particular type of insurance policy are believed to follow a Pareto distribution. Data for the last several years shows the mean claim size is 170 and the standard deviation is 400.

- (i) Fit a Pareto distribution to this data using the method of moments. [4]
- (ii) Calculate the median claim using the fitted parameters and comment on the result. [3] [Total 7]

10. CT6 September 2012 Q6

Individual claim amounts from a particular type of insurance policy follow a normal distribution with mean 150 and standard deviation 30. Claim numbers on an individual policy follow a Poisson distribution with parameter 0.25. The insurance company uses a premium loading of 70% to calculate premiums.

(i) Calculate the annual premium charged by the insurance company. [1]

The insurance company has an individual excess of loss reinsurance arrangement with a retention of 200 with a reinsurer who uses a premium loading of 120%.

- (ii) Calculate the probability that an individual claim does not exceed the retention. [2]
- (iii) Calculate the probability for a particular policy that in a given year there are no claims which exceed the retention. [2]
- (iv) Calculate the premium charged by the reinsurer. [4]
- (v) Calculate the insurance company's expected profit. [2] [Total 11]

Unit 1

11. CT6 September 2012 Q8

An insurer classifies the buildings it insures into one of three types. For Type 1 buildings, the number of claims per building per year follows a Poisson distribution with parameter λ . Data are available for the last five years as follows:

Year	1	2	3	4	5
Number of type 1 buildings covered	89	112	153	178	165
Number of claims	15	23	29	41	50

(i) Determine the maximum likelihood estimate of λ based on the data above. [5]

12. CT6 September 2013 Q2

Claim amounts on a certain type of insurance policy follow an exponential distribution with mean 100. The insurance company purchases a special type of reinsurance policy so that for a given claim X the reinsurance company pays

0 if
$$0 < X < 80$$
;
 0.5×-40 if $80 < X \le 160$;
 $X - 120$ if $X \ge 160$

Calculate the expected amount paid by the reinsurance company on a randomly chosen claim. [6]

13. CT6 September 2013 Q8

The number of claims per month Y arising on a certain portfolio of insurance policies is to be modelled using a modified geometric distribution with probability density given by

$$p(\alpha) = \frac{\alpha^{y-1}}{(1+\alpha)^y}$$
 $y = 1, 2, 3, \dots$

where α is an unknown positive parameter. The most recent four months have resulted in claim numbers of 8, 6, 10 and 9.

- (i) Derive the maximum likelihood estimate of α [5]
- (ii) Show that Y belongs to an exponential family of distributions and suggest its natural parameter. [5] [Total 10]

14. CT6 Oct 2015 Q9

A random variable X follows a gamma distribution with parameters α and λ .

(i) Derive the moment generating function (MGF) of X.

Unit 1

(ii) Derive the coefficient of skewness of X.

15. CT6 April 2016 Q2

A portfolio of insurance policies has two types of claims:

- Loss amounts for Type I claims are exponentially distributed with mean 120.
- Loss amounts for Type II claims are exponentially distributed with mean 110.

25% of claims are Type I, and 75% are Type II.

- (i) Calculate the mean and variance of the loss amount for a randomly chosen claim. An actuary wants to model randomly chosen claims using an exponential distribution as an approximation.
- (ii) Explain whether this is a good approximation.

16. CT6 April 2017 Q2

INSTITUTE OF ACTUAR Claim amounts Xi from a portfolio of insurance policies follow a gamma distribution with parameters k and λ_{i} . Each λ_{i} also follows a gamma distribution with parameters α and β .

(i) Show that the mixture distribution of losses is a generalised Pareto, with parameters α , β . k. [4]

Claim amounts are now assumed to be exponentially distributed with parameter λ_i

(ii) Show, using your answer to part (i), that the mixture distribution of losses is now a standard Pareto distribution with parameters α , β . [2] [Total 6]

17. CT6 April 2017 Q3

(i) Explain why claim amounts from general insurance policies are typically modelled using statistical distributions with heavy tails. [2]

Claim amounts on a portfolio of insurance policies are assumed to follow a Weibull distribution. A quarter of losses are below 15 and a quarter of losses are above 80.

(ii) Estimate the parameters c, γ of the Weibull distribution that fit this data. [3]

Unit 1

(iii) Determine whether or not this Weibull distribution has a heavier tail than that of the exponential distribution with parameter c, by considering your estimate of γ . [2] [Total 7]

18. CT6 September 2017 Q1

Claim amounts on a portfolio of insurance policies follow a Weibull distribution. The median claim amount is £1,000 and 90% of claims are less than £5,000.

Estimate the parameters of the Weibull distribution, using the method of moments. [4]

19. CT6 September 2018 Q8

For a portfolio of insurance policies, claims Xi are independent and follow a gamma distribution, with parameters $\alpha = 6$ and β , which is unknown.

A random sample of n claims, X1,..., Xn is selected, with mean X..

- (i) Derive an expression for the estimator of β using the method of moments. [2]
- (ii) Explain what the Maximum Likelihood Estimator (MLE) of β represents. [2]
- (iii) Derive an expression for the MLE of β , commenting on the result. [5]
- (iv) State the Moment Generating Function (MGF) of X. [1] Let $Y = 2n\beta X$.
- (v) Derive the MGF of Y, and hence its distribution, including statement of parameters. [5] [Total 15]

20. CT6 September 2018 Q4

An insurance company has a portfolio of policies, where claim amounts follow a Pareto distribution with parameters α = 3 and λ = 100. The insurance company has entered into an excess of loss reinsurance agreement with a retention of M, such that 90% of claims are still paid in full by the insurer.

- (i) Calculate M. [4]
- (ii) Calculate the average claim amount paid by the reinsurer, on claims which involve the reinsurer. [6] [Total 10]

Unit 1

21. CT6 April 2018 Q2

An insurance company has a portfolio of insurance policies. Claims arise according to a Poisson process, and claim amounts have a probability distribution with parameter q.

- (i) State one assumption the insurance company is likely to make when modelling n aggregate claim amounts. [1]
- (ii) Explain what the Maximum Likelihood Estimate (MLE) of q represents. [2]
- (iii) State an alternative to using the MLE. [1]
- (iv) Suggest two complications that may arise for the insurance company when it uses past claims data to determine the MLE of q. [2] [Total 6]

22. CS2A April 2022 Q7

The annual aggregate claim amount, S, arising on a short-term insurance portfolio follows a compound Poisson distribution with parameter 5. Individual claim amounts follow a two-parameter Pareto distribution with parameters α and λ . A sample of individual claim amounts was taken and the sample mean and standard deviation were 10,000 and 15,000, respectively.

- (i) Estimate the parameters of the Pareto distribution of the individual claim amounts using the method of moments. [5]
- (ii) Determine the variance and the third central moment of S, using the estimated Pareto parameters from part (i). [6] [Total 11]

Unit 1