

Subject:

**Statistical** Techniques and Risk Modelling IV

Chapter: Unit 3

**Category:** Practice

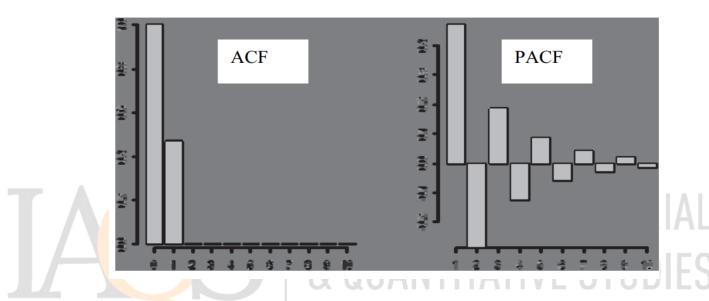
Questions



#### **ALL Questions are IFOA Past Paper Questions**

#### 1. Subject CT6 September 2013

- (i) State the three main stages in the Box-Jenkins approach to fitting an ARIMA time series model.
- (ii) Explain, with reasons, which ARIMA time series would fit the observed data in the charts below.



Now consider the time series model given by

$$X_{t} = \alpha_{1}X_{t-1} + \alpha_{2}X_{t-2} + \beta_{1}e_{t-1} + e_{t}$$

where  $e_t$  is a white noise process with variance  $\sigma^2$ .

- (iii) Derive the Yule-Walker equations for this model.
- (iv) Explain whether the partial auto-correlation function for this model can ever give a zero value.

#### 2. Subject CT6 April 2014 Question 12

A sequence of 100 observations was made from a time series and the following values of the sample auto-covariance function (SACF) were observed:

Lag SACF

UNIT 3

- 1 0.68
- 2 0.55
- 3 0.30
- 4 0.06

The sample mean and variance of the same observations are 1.35 and 0.9 respectively.

- (i) Calculate the first two values of the partial correlation function  $\hat{\phi}_1$  and  $\hat{\phi}_2$
- (ii) Estimate the parameters (including  $\sigma$ 2) of the following models which are to be fitted to the observed data and can be assumed to be stationary.

(iii)

(a) 
$$Y_t = a0 + a1 \text{ Yt} - 1 + \text{et}$$

(b) 
$$Y_t = a0 + a1 \text{ Yt} - 1 + a2 \text{ Yt} - 2 + \text{et}$$

In each case et is a white noise process with variance  $\sigma^2$ .

- (iv) Explain whether the assumption of stationarity is necessary for the estimation for each of the models in part (ii).
- (v) Explain whether each of the models in part (ii) satisfies the Markov property.

#### 3. Subject CT6 September 2014 Question 9

(i) List the main steps in the Box-Jenkins approach to fitting an ARIMA time series to observed data.

Observations  $x_1, x_2, ..., x_{200}$  are made from a stationary time series and the following summary statistics are calculated:

$$\sum_{i=1}^{200} x_i = 83.7 \qquad \sum_{i=1}^{200} (x_i - \overline{x})^2 = 35.4 \qquad \sum_{i=2}^{200} (x_i - \overline{x})(x_{i-1} - \overline{x}) = 28.4$$

$$\sum_{i=3}^{200} (x_i - \overline{x})(x_{i-2} - \overline{x}) = 17.1$$

- (ii) Calculate the values of the sample auto-covariances  $\hat{\gamma_0}$ ,  $\hat{\gamma_1}$  and  $\hat{\gamma_2}$
- (iii) Calculate the first two values of the partial correlation function  $\hat{\phi_1}$  and  $\hat{\phi_2}$

The following model is proposed to fit the observed data:  $X_t - \mu = a1 (Xt - 1 - \mu) + et$  where et is a white noise process with variance  $\sigma 2$ .

(iv) Estimate the parameters  $\mu$ , a1 and  $\sigma$ 2 in the proposed model.

#### UNIT 3

IACS

- After fitting the model in part (iv) the 200 observed residual values ^ t e were calculated. The number of turning points in the residual series was 110.
- (v) Carry out a statistical test at the 95% significance level to test the hypothesis that `t e is generated from a white noise process.

#### 4. Subject CT6 April 2015 Question 7

The following time series model is being used to model monthly data:

$$Y_t = Y_{t-1} + Y_{t-12} - Y_{t-13} + e_t + \beta_1 e_{t-1} + \beta_{12} e_{t-12} + \beta_1 \beta_{12} e_{t-13}$$

where  $e_t$  is a white noise process with variance  $\sigma^2$ .

- (i) Perform two differencing transformations and show that the result is a moving average process which you may assume to be stationary.
- (ii) Explain why this transformation is called seasonal differencing.
- (iii) Derive the auto-correlation function of the model generated in part (i).

#### 5. Subject CT6 April 2016 Question 9

Consider the following time series model:

$$Y_t = 1 + 0.6Y_{t-1} + 0.16Y_{t-2} + \varepsilon_t$$

where  $\varepsilon_t$  is a white noise process with variance  $\sigma^2$ .

- (i) Determine whether  $Y_t$  is stationary and identify it as an ARMA(p,q) process.
- (ii) Calculate  $E(Y_t)$ .
- (iii) Calculate for the first four lags:
  - the autocorrelation values  $\rho_1$ ,  $\rho_2$ ,  $\rho_3$ ,  $\rho_4$  and
  - the partial autocorrelation values  $\psi_1, \psi_2, \psi_3, \psi_4$ .



#### 6. Subject CT6 September 2016 Question 9

In order to model the seasonality of a particular data set an actuary is asked to consider the following model:

$$(1-B^{12})(1-(\alpha+\beta)B+\alpha\beta B^2)X_t = \varepsilon_t$$

where *B* is the backshift operator and  $\varepsilon_t$  is a white noise process with variance  $\sigma^2$ .

The actuary intends to apply a seasonal difference  $\nabla_s X_t = Y_t$ .

- (i) Explain why s should be 12 in this case (i.e.  $Y_t = X_t X_{t-12}$ ).
- (ii) Determine the range of values for  $\alpha$  and  $\beta$  for which the process will be stationary after applying this seasonal difference.

Assume that after the appropriate seasonal differencing the following sample autocorrelation values for observations of  $Y_t$  are  $\hat{\rho}_1 = 0$  and  $\hat{\rho}_2 = 0.09$ .

IAL

(iii) Estimate the parameters  $\alpha$  and  $\beta$ .

The actuary observes a sequence of observations  $x_1, x_2, ..., x_T$  of  $X_t$ , with T > 12.

(iv) Derive the next two forecasted values for next two observations  $\hat{x}_{T+1}$  and  $\hat{x}_{T+2}$ , as a function of the existing observations.

#### 7. Subject CT6 April 2017 Question 6

UNIT 3

# IACS

Model A is a stationary AR(1) model, which follows the equation:

(i) State two approaches for estimating the parameters in Model A.

$$y_t = \mu + \alpha y_{t-1} + \varepsilon_t$$

where  $\varepsilon_t$  is a standard white noise process.

Mary, an actuarial student, wishes to revise Model A such that the error terms at no longer follow a Normal distribution.

- (ii) Explain which of the approaches in part (i) she should now use for parameter estimation.
- (iii) Propose a method by which Mary will be able to calculate estimates of the parameters α and σ2, with reference to any relevant equations.
   Mary, has now constructed Model B. She has done this by multiplying both sides of the

Mary, has now constructed Model B. She has done this by multiplying both sides of the equation above by (1 - cB), where B is the backshift operator, so that Model B follows the equation:

$$y_t(1-cB) = (\alpha y_{t-1} + \varepsilon_t)(1-cB)$$
.

- (iv) Explain why Model A and Model B are identical.
- (v) Explain for which values of c Model B is stationary.

#### 8. Subject CT6 September 2017 Question 10

(i) Show that  $X_t$  is not stationary.

Let 
$$\Delta X_t = X_t - X_{t-1}$$
.

- (ii) Show that  $\Delta X_t$  is stationary.
- (iii) Determine the autocovariance values of  $\Delta X_t$  in terms of those of  $Y_t$ .

Now assume that  $Y_t$  is an MA(1) process, i.e.  $Y_t = \varepsilon_t + \beta \varepsilon_{t-1}$ 

- (iv) Set out an equation for  $\Delta X_t$  in terms of b,  $\beta$ ,  $\epsilon_t$  and L, the lag operator.
- (v) Show that  $\Delta X_t$  has a variance larger than that of  $Y_t$ .

# 9. Subject CT6 April 2018 Question 9

Consider the following time series model:

UNIT 3

$$(1 - \alpha B)^3 Xt = \epsilon t$$

where B is the backshift operator and et is a standard white noise process with variance s^2.

- (i) Determine for which values of a the process Xt is stationary. Now assume that Xt is stationary.
- (ii) Calculate the autocorrelation function for the first two lags: r1 and r2, using the Yule-Walker equations.
- (iii) State the formulae, in terms of r1 and r2, for the first two values of the partial auto correlation function f1 and f2.

Now assume that a = 1.

(iv) Explain how to fit the parameter of this model, given the time series observations X1, X2, ..., XT

#### 10. Subject CT6 September 2007 Question 10

The time series  $X_t$  is assumed to be stationary and to follow an ARMA (2,1) process defined by:

$$X_t = 1 + \frac{8}{15} X_{t-1} - \frac{1}{15} X_{t-2} + Z_t - \frac{1}{7} Z_{t-1}$$

where  $Z_t$  are independent N(0,1) random variables.

- (i) Determine the roots of the characteristic polynomial, and explain how their values relate to the stationarity of the process.
- (ii) (a) Find the autocorrelation function for lags 0, 1 and 2.
  - (b) Derive the autocorrelation at lag k in the form

$$\rho_k = \frac{A}{c^k} + \frac{B}{d^k}$$

(iii) Determine the mean and variance of  $X_t$ .

#### 11. Subject CT6 September 2018 Question 9

UNIT 3

An actuary is modelling a set of data which consists of 100 consecutive observations,  $y_1, y_2, \dots, y_{100}$ . The data has the following statistics:

$$\overline{y} = \frac{1}{100} \sum_{i=1}^{100} y_i = A = 10.5$$

$$\sum_{i=1}^{100} (y_i - \overline{y})^2 = B = 290$$

$$\sum_{i=2}^{100} (y_{i-1} - \overline{y})(y_i - \overline{y}) = C = 60$$

$$\sum_{i=3}^{100} (y_{i-2} - \overline{y})(y_i - \overline{y}) = D = -240$$

- (i) Calculate the values of the sample auto-correlations  $r_1$  and  $r_2$ .
- (ii) Calculate the first two sample partial auto-correlation values  $\hat{\phi}_1$  and  $\hat{\phi}_2$ . [2]

The actuary is considering two different models for this data:

Model X: 
$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$

Model Y: 
$$y_t = b_0 + b_1 y_{t-1} + b_2 y_{t-2} + \varepsilon_t$$

where  $\varepsilon_t$  is a standard white-noise process, with variance  $\sigma^2$ .

- (iii) Estimate the parameters (including  $\sigma^2$ ) for both Models X and Y, using the method of moments. [10]
- (iv) Explain whether each of Models X and Y satisfy the Markov property. [3

# 12. Subject CS2 April 2021 Question 9

UNIT 3

Consider the following time series process:

Yt = 1 + 0.3 Yt - 1 + 0.1 Yt - 2 + et

where et is a white noise process with variance  $\sigma$ 2.

- (i) Determine whether Yt is stationary and identify the values of p, d and q for which the process is an ARIMA(p,d,q) process.
  - Let  $\rho k$  and  $\phi k$  denote the values at lag k of the autocorrelation and partial autocorrelation functions, respectively.
- (ii) Determine the autocorrelation values  $\rho 1$ ,  $\rho 2$  and  $\rho 3$ .
- (iii) Determine the partial autocorrelation values  $\phi 1$ ,  $\phi 2$  and  $\phi 3$ .

A sample of the process Yt is taken in which the sample autocorrelation values are equal to the theoretical values  $\rho k$ .

- (iv) Determine the minimum sample size, n, necessary to reject the null hypothesis of a white noise process, under the Ljung and Box 'portmanteau' test using three lags and a 5% significance level.
- (v) Discuss the relative merits of using a large or a small number of lags in the Ljung and Box 'portmanteau' test by considering how the value of n in part (iv) would vary if a different number of lags were used or if the sample autocorrelation values were not equal to the theoretical values.

# 13. Subject CS2 September 2021 Question 7

UNIT 3

An Actuary is considering using the following process to model a seasonal data set:

$$(1-B^3)(1-(\alpha+\beta)B+\alpha\beta B^2)X_t=e_t$$

where B is the backwards shift operator and  $e_t$  is a white noise process with variance  $\sigma^2$ .

A seasonal difference series is defined as follows:

$$Y_t = X_t - X_{t-3}$$

- Express the equation for the original process X<sub>t</sub> in terms of the seasonal difference series, Y<sub>t</sub>, and the backwards shift operator B.
- (ii) Determine the range of values of α and β for which the seasonal difference series, Y<sub>t</sub>, is stationary.

Let  $\gamma_k$  and  $\rho_k$  denote the values at lag k of the autocovariance and autocorrelation functions, respectively, of the seasonal difference series,  $Y_t$ . The first Yule–Walker equation for  $Y_t$  may be written as follows:

- $1 (\alpha + \beta)\rho_1 + \alpha\beta\rho_2 = \frac{\sigma^2}{\gamma_0}$
- (iii) Write down the second and third Yule–Walker equations for  $Y_t$  in terms of  $\rho_1$  and  $\rho_2$ .

The Actuary has observed the following sample autocorrelation values for the series  $Y_t$ :  $\hat{\rho}_1 = 0.5$  and  $\hat{\rho}_2 = 0.2$ .

(iv) Estimate, using the equations in part (iii), the parameters α and β based on this information.

[Hint: let  $M = \alpha + \beta$  and  $N = \alpha\beta$  and use the formula for finding the roots of a quadratic equation.]

(v) Determine the values of the one-step ahead and two-step ahead forecasts,  $\hat{x}_{550}$  and  $\hat{x}_{551}$ , respectively, based on the parameters estimated in part (iv) and the observed values  $x_1, x_2, ..., x_{549}$  of  $X_t$ .

[Total 14

# 14. Subject CT6 April 2007 Question 3

(i) Explain the concept of cointegrated time series.

UNIT 3



(ii) Give two examples of circumstances when it is reasonable to expect that two processes may be cointegrated.

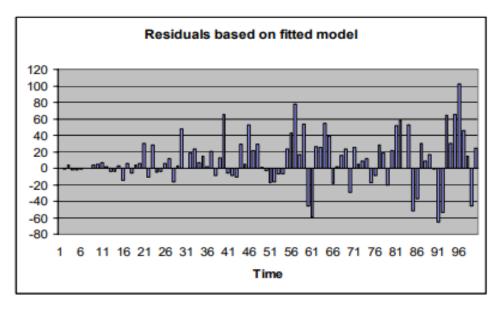


# INSTITUTE OF ACTUARIAL & QUANTITATIVE STUDIES

15. Subject CT6 April 2007 Question 8

UNIT 3

A modeller has attempted to fit an ARMA(p,q) model to a set of data using the Box-Jenkins methodology. The plot of residuals based on this proposed fit is shown below.



- TUARIAL STUDIES
- Under the assumptions of the model, the residuals should form a white noise process.
  - (a) By inspection of the chart, suggest two reasons to suspect that the residuals do not form a white noise process.
  - (b) Define what is meant by a turning point.
  - (c) Perform a significance test on the number of turning points in the data above. (There are 100 points in the data and 59 turning points.)
    [6]

 On your suggestion, the original fitted model is discarded, and reparameterised to:

$$X_{n+2} = 5 + 0.9(X_{n+1} - 5) + e_{n+2} + 0.5e_n$$

Given the following observations:

$$X_{99} = 2,$$
  $X_{100} = 7$   
 $\hat{e}_{99} = -0.7,$   $\hat{e}_{100} = 1.4$ 

Use the Box-Jenkins methodology to calculate the forward estimates  $X_{100}(1), X_{100}(2)$  and  $X_{100}(3)$ . [4]

# 16. Subject CT6 2009 September Question 6

UNIT 3

ľ

The following data is observed from n = 500 realisations from a time series:

$$\sum_{i=1}^{n} x_i = 13153.32 \text{ , } \sum_{i=1}^{n} (x_i - \overline{x})^2 = 3153.67 \text{ and } \sum_{i=1}^{n-1} (x_i - \overline{x})(x_{i+1} - \overline{x}) = 2176.03 \text{ .}$$

(i) Estimate, using the data above, the parameters  $\mu$ ,  $a_1$  and  $\sigma$  from the model

$$X_t - \mu = a_1(X_{t-1} - \mu) + \varepsilon_t$$

where  $\varepsilon_t$  is a white noise process with variance  $\sigma^2$ .

(ii) After fitting the model with the parameters found in (i), it was calculated that the number of turning points of the residuals series  $\hat{\epsilon}_t$  is 280.

Perform a statistical test to check whether there is evidence that  $\hat{\varepsilon}_t$  is not generated from a white noise process.

# 17. Subject CT6 September 2010 Question 11

A time series model is specified by

$$Y_{t} = 2\alpha Y_{t-1} - \alpha^{2} Y_{t-2} + e_{t}$$

where  $e_t$  is a white noise process with variance  $\sigma^2$ .

- (i) Determine the values of  $\alpha$  for which the process is stationary.
- (ii) Derive the auto-covariances  $\gamma 0$  and  $\gamma 1$  for this process and find a general recursive expression for  $\gamma k$  for  $k \ge 2$ .
- (iii) Show that the auto-covariance function can be written in the form:  $\gamma_k = A\alpha^k + kB\alpha^k$

for some values of A, B which you should specify in terms of the constants  $\alpha$  and  $\sigma 2$ .

# 18. Subject CT6 September 2014 Question 9

UNIT 3

# IACS

 (i) List the main steps in the Box-Jenkins approach to fitting an ARIMA time series to observed data.

Observations  $x_1, x_2, ..., x_{200}$  are made from a stationary time series and the following summary statistics are calculated:

$$\sum_{i=1}^{200} x_i = 83.7 \qquad \sum_{i=1}^{200} (x_i - \overline{x})^2 = 35.4 \qquad \sum_{i=2}^{200} (x_i - \overline{x})(x_{i-1} - \overline{x}) = 28.4$$

$$\sum_{i=3}^{200} (x_i - \overline{x})(x_{i-2} - \overline{x}) = 17.1$$

- (ii) Calculate the values of the sample auto-covariances  $\hat{\gamma}_0$ ,  $\hat{\gamma}_1$  and  $\hat{\gamma}_2$ .
- (iii) Calculate the first two values of the partial correlation function  $\hat{\phi}_1$  and  $\hat{\phi}_2$ .

FARIAL

The following model is proposed to fit the observed data:

$$X_t - \mu = a_1 (X_{t-1} - \mu) + e_t$$

where  $e_t$  is a white noise process with variance  $\sigma^2$ .

(iv) Estimate the parameters  $\mu$ ,  $a_1$  and  $\sigma^2$  in the proposed model.

After fitting the model in part (iv) the 200 observed residual values  $\hat{e}_t$  were calculated. The number of turning points in the residual series was 110.

(v) Carry out a statistical test at the 95% significance level to test the hypothesis that  $\hat{e}_t$  is generated from a white noise process.

[Total 16

# 19. Subject CT6 April 2015 Question 7

UNIT 3



The following time series model is being used to model monthly data:

$$Y_t = Y_{t-1} + Y_{t-12} - Y_{t-13} + e_t + \beta_1 e_{t-1} + \beta_{12} e_{t-12} + \beta_1 \beta_{12} e_{t-13}$$

where  $e_t$  is a white noise process with variance  $\sigma^2$ .

- (i) Perform two differencing transformations and show that the result is a moving average process which you may assume to be stationary. [3]
- (ii) Explain why this transformation is called seasonal differencing. [1]
- (iii) Derive the auto-correlation function of the model generated in part (i). [8]



# INSTITUTE OF ACTUARIAL & QUANTITATIVE STUDIES

#### 20. Subject CT6 September 2015 Question 11

UNIT 3



Consider the following pair of equations:

$$X_t = 0.5X_{t-1} + \beta Y_t + \varepsilon_t^1$$

$$Y_t = 0.5Y_{t-1} + \beta X_t + \varepsilon_t^2$$

where  $\varepsilon_t^1$  and  $\varepsilon_t^2$  are independent white noise processes.

(i) (a) Show that these equations can be represented as

$$M \begin{pmatrix} X_t \\ Y_t \end{pmatrix} = N \begin{pmatrix} X_{t-1} \\ Y_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_t^1 \\ \varepsilon_t^2 \end{pmatrix}$$

where M and N are matrices to be determined.

- (b) Determine the values of  $\beta$  for which these equations represent a stationary bivariate time series model.
- (ii) Show that the following set of equations represents a VAR(p) (vector auto regressive) process, by specifying the order and the relevant parameters:

$$X_t = \alpha X_{t-1} + \alpha Y_{t-1} + \varepsilon_t^1$$

$$Y_t = \beta X_{t-1} - \beta X_{t-2} + \varepsilon_t^2$$