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1 Introduction to Survival Modelling
1.1 What is Survival Modelling?

Survival is the probability of remaining alive for a specific length of
time.

Survival analysis or survival modelling is the use of statistical methods
for analyzing the data on the occurrence of an event.

Events may include death, injury, onset of iliness, recovery from
iliness, death after recovery or transition above or below the clinical
threshold of a meaningful continuous variable, etc.

Example:-Researchers used a SYSUCC medical record database to
identify Oral Cavity Cancer (OCC) patients diagnosed from 1960 to
2009. A total of 3,362 previously untreated patients with histologically
confirmed OCC were enrolled in this study. They were classified based
on age and gender. It was realized survival rates for females were
significantly higher than males.
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1.1 What is Survival Modelling?

7

Interpret and comment on the graph alongside

The graphs can be interpreted as follows:

1.

2.

All patients who had untreated OCC were enrolled into the study
between 1960 and 2009.

We assume the study concluded in 2009 and hence the last patient
admitted in this study was in 1 Jan 2005 and the study concluded on
31 December 2009. The duration of this study was 60 months and
patients were not monitored post 5 years i.e. censored post 5 years.
Hence we see that all patients who enrolled were alive on day 1 as
can be inferred from the starting point.

After 60 months it can be concluded based on the graph that more
no. of females were alive than males which leads us to conclude that
females had higher survival rates.
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1.2 Why survival modelling?

Various institutions like insurance and reinsurance firms and others face the need to do survival analysis in order
to plan for future

Life table or actuarial methods are used to develop survival curves, these help to study the patterns in them.
The expectation of life is often used as a measure of the standard of living and health care in a given country.

Can you guess which countries had life expectancy of 35 to 40 years and which had life expectancies of 75 to 80
years based on CIA word factbook in 2009?

35 to 40 years - Angola and Zambia;
75 to 80 years - Western countries like USA, Japan etc.



1.2 Why survival modelling?
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Did you know 1 in 555k people do not survive Scuba Diving! Can you guess how many people don't survive a
dog bite?

1in 225K do not survive but annually there are millions of reported dog bites.

The models of lifetime or survival learned in this chapter can be applied in several other actuarial contexts. Can

you guess a few??

Other actuarial context : disability, sickness/illness, retirement, unemployment and withdrawals (lapse rates)

Self Study: Watch the video about Probability Comparison: Chances Of Survival — YouTube



https://www.youtube.com/watch?v=_DFwgFFlK_I

1.2 Why survival modelling?

0 Can you name a few other fields and the applications of these models in these fields?

* Engineering: lifetime of a machine, lifetime of a light bulb

» Medical statistics: time-until-death from diagnosis of a disease, survival after surgery.

* Finance : time-until-default of credit payment in a bond, time-until-bankruptcy of a company
« Space probe : probability radios installed in space continue to transmit

» Biology: lifetime of an organism

@) Watch the video about uses of survival analysis

Brief Introduction to Survival Analysis - YouTube
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2.1a

Life table Distributions & Functions

Simple Survival Model

We start with the future lifetime.
For a person now aged x, it's future lifetime is defined as T,. For a new born, x = 0, so that we have future
lifetime as T. Life aged x is denoted by (x).

T, = Future lifetime beyond age x of an individual who has survived to age x [measured in years
and partial years].

» The total life length of this individual will be x + T, , i.e. this is the age at which the individual dies [including
partial years]. The additional years of life T,, beyond x is unknown and therefore is viewed as a continuous
random variable.

» We have a maximum age or limiting age. Let w denote some upper age limit . Therefore, future lifetime is
continuously distributed on an interval [0,w] where 0 < w < co.



2.1.b Distribution of Future Lifetime Random Variable

The future lifetime random variable for life aged x is described as,

O For0 < x < w,
= E.(t) =P [T, £ t]isthe distribution function of T,
S,(t) =P [T, >t]=1-E.(t)is the survival function of T,

S, (t) is known as the survival function of T,, because it represents the probability of a life aged x surviving to
agex +t.

Clearly, F,.(t) = P[T, < t] is the probability that someone who has survived to age x will not survive beyond age
X + t.



2.1.b Distribution of Future Lifetime Random Variable
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Explain F,,(40) and compare ;p,, with ,p,;

F,,(40) is the probability of a person currently aged 20 dies before their 60t birthday. This can also be

represented as 4,0,

3P»» with 4p,q is the probability that a person aged 22 survives till age 25 and a person aged 21 survives till age
25 respectively. Probability of survival for someone aged 22 till 25 will be higher than someone aged 21 till 25
as the period of survival is already included in later.

Note: p, is a decreasing function i.e. as t increases the probability of survival is lower.

10



2.1c Actuarial notation for Probabilities

Survival Probability Mortality Probability
tPx = 1- tAx = Sx(t) tAx = Fx(t)
* .p,Is the probability that a life now aged x is * ., is the probability that a life now aged x dies
still alive after t years. within t years.
* Py is the probability that a life now aged x is * (, is the probability that a life now aged x dies
still alive after 1 year within 1 year.

From above: .q, +p, =1

11



2.1d

-
-

-

Force of Mortality

Force of mortality is the instantaneous death rate for a life. It is denoted as u,, = p(x)= force of mortality at
age X, given survival to age x. This is also called the "hazard rate” or “failure rate.” It is the continuous equivalent
of the discrete quantity q,.

Force of mortality at age x is defined as: u, = hlir(r)1+% * PIT <x+h|T > x]
Force of mortality at age x + t, can be defined as: iy, = hlir51+% * P[Tx <t+ h|Tx > t]

Force of mortality at age x + t, can also be defined as
. 1
,ux+t=hll>%1+ﬁ * PIT<x+t+h|T>x+t]

Note: Here we have defined ux using the lifetime function at age x. .



2.1d Force of Mortality

Inferring from the definition, we can say that

N Uyys = hlir(r)1+ KOyt (Person aged exact x+t dies within small time frame of 'h’ i.e. within x+t+h)
-

= lim, P(Tye < h)

= hlir(r)1+ P(T, <t+h|T, >1t) (Using conditional probability)

i.e. person aged exact x dies within x+t+h given they lived atleast for x+t years.

13



2.1e The density function of T,

We have already seen that the distribution function of T, is E,(t) = P [T,,< t ]. Now we look at the
probability density function.

« Denote this by f,.(t) , and recall that: f,.(t) = %Fx(t)

Substituting the formula for F,(t) and carrying out a systematic derivation gives us a very important result
of the survival model.

PDF of Ty = Sy(t) - fhorss

Substituting the survival probability S, (t) as (p, gives us:
fe(£) = Px - Hxse ;(0=st<w-—x)

14



2.1e The probability density function of T,

The distribution function of Ty is Fy(t), by definition. We also want to know its probability density function

(PDF).
Denote this by fx(t), and recall that: fx(t) = %Fx(t)

Then: p
fx(®) =< P[T, < t]

- }}Lrg+%.(P[Tx <t+h]-P[T, <t])

P[T<x+t+h|T>x]|—-P[T<x+t|T>x]
h—0% h

P[T<x+t+h]-P[T<x]—(P[T<x+t]—-P[T<x])

h-0t S(X)h

m P[T<x+t+h]|—-P[T<x+t]
h-0t S(X)h

From the definition of a derivative
— first principles

Using conditional probability
P(A/B) = P(A n B)/P(B)

This is in the form we want but not

with the required denominator
15



2.1e The probability density function of T,

Now multiply and divide by S(x + t) and we have:

S(x+1t) 1P[T<x+t+h]—P[T <x+t]

o) = =5y Jim, SG+10)

1
=Sx(t).hli_)r(r)1+EP[TSx+t+h|T>x+t]

= Sy (). tytt

or, in actuarial notation, for a fixed age x between 0 and w :
fx(®) = ¢Px-tixst (0 <t<w—X)

This is one of the most important results concerning survival models.

16



2.1g Important results involving P,

Fx(t) = {x = 1 — tPx
Differentiating w.r.t t

v

0 0
fx(t) = It (1 - tpx) = at (_ tpx)
From earlier, f,(t) = Py - st

0
Therefore: p, . Ux+t = a(— Py

_ 190, )
#x+t - th at( th

Using formula for % (In x), we get

0
Hx+t = at (_ In tpx)
Integrating both sides

t t o
f() Ux+s dS = - fo a ln (tpx)

v

v

t
Thusl tpx — e_ f() Hx+s ds

17



2.1h Complete Expectation of Life

We now look at the expected value of the random variable T,.

It is denoted by ey. The symbol reads as ‘e-circle-x'. This is the complete expectation of life for a life of age x. It
considers complete years as well as partial or fractional years.

We will be using the result that, \p,, . ty+t = fi () = in(t) = ith _ (1—-.p,) = _itpx
ot ot ot ot

Derivation:

(0]
ex :f t Py - Hyse dt
0

0 d
=j t'<__tpx>dt . . .
0 d Using integration by parts on page 3 of actuarial
Jt=oo tables.
~ 6. - [ o

:j tpx dt
0

Q Complete Expectation of Life = e2 = E(T,)

18



2.1i

Curtate Future Lifetime

The random variable K, is used to represent the curtate future lifetime for a life of exact age x (i.e. the number
of complete years lived after age x).

The curtate future lifetime of a life age x is: K,,= [T, ] where the square brackets denote the integer part.

[T, rounded down ]

The probability: P|K, =k| =Pk <T, <k +1]
=Pk<T,<k+1]|
=~k Pxqx+k

This result is intuitive. If the random variable Kx takes the value k , then a life of exact age x must live for k
complete years after age x . Therefore, the life must die in the year of age to (x+k) to ( x+k+1).

We also use the symbol k|g, to represent P[K, = k]. It is read as 'k deferred q,', and we can think about this as
deferring the event of death until the year that begins in k years from now.

19



2.1i

Curtate Expectation of Life

Curtate expectation of life is denoted by e,,.

Thus, we have e, = E(K,) = Yx=ok .Pr(K, = k)

Carrying the derivation gives the result for the expectation.

Curtate expectation of life: e, = E(K,) = Yrrq Py

Relationship between complete and curtate expectation assuming linearity between integer ages

They are related by the approximation equation:
et =e, + 12

To see this, define J,, = T, - K, to be random lifetime after the highest integer age to which a life x survives.
Approximately, E[/,.] = V2, but E[T,] = E[J,] + E[K,] so, e2 = e, + V2 as stated.

20



Curtate Expectation of Life

Derivation:

e, = E(K,) = k.Pr(K, = k)

Now Pr(K, = k) is that a person aged x years lives for another 'k’ years & dies before age x+k+1.

So, Pr(Ky = k) =k Dx«Qx+k
Similarly Pr(K, = k + 1) =;41 Px * Qx+xr+1 and so on.

We can restate, Pr(K, = k) =k DPx * qx+k 3S (Px - k+1Px Which is nothing but probability of surviving till age
x+k less probability of surviving till age x+k+1.

This implies that person age x will survive till age x+k & die before x+k+1.

E(Ky) = Xk=ok .Pr(Ky = k) = Xp=ok . (Px — x+1Px)
=0+ 1(1Dx - 2Px) + 2.GDx ~ 3Px) + ...
= 1Px t oPx T 3Px t ..o (cancelling the additional terms)

E(Kx) = Zlio=1' kKPx = €x

21



2.1]

Life Table Functions

A life table(also called a mortality table
or actuarial table) is a table which
shows, for each age, what the probability
Is that a person of that age will die before
his or her next birthday ("probability of
death"). In other words, it represents the
survivorship of people from a certain
population

The following are definitions of the
standard actuarial life table functions:

Symbol Definition

qx Probability that a person aged x will die within 1
year.

L, Number of persons surviving to exact x.

d, Number of deaths between exact ages x and x+1.

L, Number of persons years lived between exact ages
x and x+1.

T, Number of person years lived after exact age x.

€y Average number of years of life remaining at exact

age Xx.

22




2.1k Central Force of Mortality m,

Q

Central Force of Mortality : m, =

Qx

1
fo th dat

The quantity m, is the probability of dying between exact ages x and x+1 per person-year lived
between exact ages x and x+1; the denominator foltpx dt is interpreted as the expected amount of

time spent alive between ages x and x +1 by a life alive at age x, and the numerator is the probability
of that life dying between exact ages x and x +1.

m, is useful when the aim is to project numbers of deaths, given the number of lives alive in age
groups: this is one of the basic components of a population projection.

In practice, the age groups used in population projection are often broader than one year, so the
definition of m,, has to be suitably adjusted.

23



2.2 Life table Distributions & Functions

It is common for the standard life table functions such as |, or p to be tabulated at integer ages only. However,
the actuary may be required to calculate probabilities involving non-integer ages or durations. In order to do so

we can approximate the values for non integer ages x + t where O<t<1.

We consider three possible approaches.

24



2.23

Uniform Distribution of Deaths (UDD)

In this case, we assume that any deaths over the year of age to occur uniformly over the year x to (x +1). This is
equivalent to the assumption that the function L, is linear over the interval (x, x+1).

UDD Assumption
If deaths are uniformly distributed between the ages of x and x+1, it follows that .q, = t.q, forO<t<1.

In situations where both t & x take non-integer values, for eg: 55055 We use the formula:
t—s).
t-sOyrs = —(1 _Ss)qu; where 0 < s < 1.

If the required value cannot take the above form, it won't be possible to use the above formula.
Proof of the above is not examinable.

Thus, under UDD , the force of mortality is an increasing function over the year of age x to x+1.
The UDD implies that the function ;p, . 4,1+ = constant

As we are aware that ;p, is a decreasing function hence ,,+ (force of mortality) is an increasing function

between x to x + 1 .



2.2b

Constant Force of Mortality (CFM)

In this case, we assume that the function p is constant over the year of age x to(x+1) i.e. for integer x and 0
<t <1, wehave y,,+ = M = constant.

Under the assumption of a constant force of mortality between integer ages, we find the value of the constant u
: 1 _
using: Px = €xp (_ fO .ux+tdt) =e™M =>p= —In(py)

Then, for0 <t < 1, we have: ., = 1 — p,

t
=1—exp (_j .ux+sd5)
%
=1—exp (—j uds)
0

=1—e

CFM Assumption:,p, = e '#;For 0<t<1

26



2.2 Life table Distributions & Functions

Example

: 1 :
Given pgg = 0.75, calculate =, 990 , assuming:

(a@)a uniform distribution of deaths between integer ages, and

(b) a constant force of mortality between integer ages.
Solution:

a) Uniform Distribution of Deaths:
1 1
12 990 = 5 X qoo

= 0.0208333

b) Constant force of mortality
First, we must find the value of y, the constant force
of mortality over the year of age (90,91)

We have u=-In( pgy) = -In(0.75) = 0.287682 .
1
Then we have: — ggo = 1 — e 712" = 0.023688

27



Question

Subject CT4 September 2007 (Q6)

Below is an extract from English Life Table 15 (Males)

Ages I

.
58 38,792
62 84.173

(i) Estimate lgo under each of the following assumptions:

(a) a uniform distribution of deaths between exact ages 58 and 62 years;

and

(b) a constant force of mortality between exact ages 58 and 62 years

(i) Find the actual value of l¢ in the tables and hence comment on the relative validity of the two assumptions
you used in part (i)

28



Solution

(1) (a) Assuming a uniform distribution of deaths between ages 58 and 62

mmplies that half of those who die between those ages die between ages
58 and 60.

Therefore
leo =1Iss—0.5(Iss— Ilg2)

= 88,792 — 0.5(88.792 — 84.173)

= 86.482.5.

29



Solution

(b)

ALTERNATIVE 1

Let the constant force of mortality be .

4
Then we have 4psg = exp[—l udx ] =g M
0
I 84.173
But 4psg =22 =———=0.94798
Isg 88.792

Therefore e ™ =0.04798 .
so that —4p =log,(0.94798)=-0.05342.

whence n=0.01336.

Therefore with a constant force of mortality.

lIso = Isg exp[—2(0.01336)] = 88,792(0.97363)

SO 160 = 86.452.

ALTERNATIVE 2

Let the constant force of mortality be p.

4
Then we have 4psg =exp [—J pdx] =M,
0
lex
But ,p = 1

38

Now lgy =Isg., Pss-

; -9 l
and, since ypsg =€ = Je P = ’]6_3 .
58

Le=1 iL = Il = J(88.792)(84.173)
58

s0 lgg = 86.452

30



Solution

(i1)

The actual value of /gy from the tables is 86.714.

This shows that neither assumption is very accurate, but that the uniform
distribution of deaths (UDD) is closer than the constant force of mortality.

The UDD assumption is better than the constant force of mortality assumption
because UDD implies an increasing force of mortality over this age range.
which is biologically more plausible than the assumption of a constant force.

The fact that the actual value of /g is considerably greater than that implied by

the UDD assumption suggests that the true rate of increase of the force of

mortality over this age range in English Life Table 15 (males) 1s even greater
than that implied by UDD.

31



2.2¢C

The Balducci Assumption

The Italian actuary Balducci proposed an alternative approach for estimating probabilities at non integer ages
and durations.

Balducci Assumption

For integer age x and 0 < t < 1, the Balducci assumption gives,
q.=1— 1—-ayx — t.qx

X 1-(1-t) .qx  1-(1-t) .qx

Page 37 of the tables states the Balducci assumption as:
149x+t = (1_t)qx

For the Balducci assumption, it can shown that the force of mortality at age (x+t) is given by:
Ax

#x+t_1_(1_t).qx

Thus, under the Balducci assumption, the force of mortality is a decreasing function over the year of age x

to x +1. This result is counter-intuitive and inconsistent with the expected pattern for the force of mortality for

human populations.
32



2.2¢C

The Balducci Assumption

Force of mortality being a decreasing function in the above assumption, can you think of any practical uses for
the same?

Some possible examples can be:

1) Measuring the efficacy of life saving drugs like biologics where patients are at higher rate of mortality and
post consumption of the drug end up experiencing decreasing rate of mortality

2) Similarly, patients on the operating table maybe at experiencing at a higher rate of mortality and begin to
experience a downward rate of mortality post a successful surgery.

33



1.2 Life table Distributions & Functions

Q Discuss which graph corresponds with which fractional age assumption.

I

Lk A
i\ 1001
1 -
0.8 EU ]
06 _4'_|_|_|7 60 -
0.4 4 40 -
0.2 1 20 -
0 | T T T —* age, X 0 T T 1 T ___1.—} age, x
100 101 102 103 104 105 100 101 102 103 104 105

CFM ubD
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Life table Distributions & Functions

Important Formulae!

We have already seen the definitions of the survival probability (;p,) and mortality probability (,q,). We consider
the formulas, while one can look out at the derivations if interested.

A formula for q,:

= F(t) = fotfx(s)ds = fottpx Mxts dS

A formula for ,p, :

tPx = €Xp {_ fot llx+sd5}

35



Parametric Survival Models

Parametric modelling requires choosing one or more
distributions. The parametric survival models are in
regular practical use where the future lifetime
random variable is defined using certain statistical
distributions with specific defined parameters.

Under parametric models, we make an assumption
regarding the underlying distribution, and then try
to make inferences about the survival function or the
hazard function.

We now look at some parametric models.

o

K2 ..‘
e,‘xk\l\%\

\\(‘,1\ o@ w
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3.1 Parametric Survival Models

Exponential Model

Exponential distribution is one of the common assumption taken in survival models. The hazard function does not

vary with time i.e., we assume that the hazard function is constant. This distribution can be assumed in case of
natural death of human beings where the rate does not vary much over time.
Assume that T ~ Exp(\) with the probability density function f(t) = A.exp(—At)

and hazard function = A

The graph of hazard function looks like:

Referring pg 15 of formula and tables pdf we see C

razamg

CDFFt) = 1-e7% = g,

Hence, p, . 1-1+ e * _e A

e

asm

S(t) =p= e~ *
At

Therefore, ,q,=1-e~ -

37



3.2 Weibull Model

Weibull model is an extension to the exponential survival model.

Assuming T ~Weibull(\, p) with probability density function f(t) = AptP~lexp(—AtP), wherep > 0 and A > 0,

Sx(t) = p, = el7AH]
Hazard function is given by
h(t) = /‘{p.t(p_l)

Mazard Function h(t)

p is called shape parameter:

If p > 1 the hazard increases.
If p = 1 the hazard is constant (exponential model).

If p < 1 the hazard decreases. -

38



Parametric Survival Models

Relationship between Exponential and Weibull Model

We can see how survivor functions for various

distributions relate to each other. Recall that the -
survivor function is 1 minus the cumulative

distribution function, S(t) = 1 - F(t). o
We plot the survivor function that corresponds to =
our Weibull(5,3). We add a Weibull(3,3) and

Weibull(1,3). -

We are also going to plot an exponential(3) with a
thin line. Where is this line seen in the graph? |—
You will see that it falls entirely over the Weibull(1,3)

Weibull(5,3)
Weibull(3,3)
Weibull(1,3)
exponentiali3)

Survivor Functions

because the Weibull(1,b) is equal to the
exponential(b)

1
[ B

Self Study - Link : New statistical distribution functions | Stata 14

T

1

39


https://www.stata.com/stata14/statistical-distribution-functions/

Y

Parametric Survival Models

Weibull Model usage:

Weibull Model:

Reliability engineers use statistics and mathematical analysis to predict how long their devices will function. By
knowing how long a device should work, they can predict warranty periods, plan preventative maintenance, and
order replacement parts before they are needed.

(Using example of bulbs)

Comparing and Weighting Two Weibull Models
https://demonstrations.wolfram.com/ComparingAndWeightingTwoWeibullModels/

40
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Question

CT4 April 2009 Q10

Let Tx be a random variable denoting future lifetime after age x, and let T be another random variable
denoting the lifetime of a new-born person.

(i) (@) Define, in terms of probabilities, Sx (t) , which represents the survival function of Tx.
(b) Derive an expression relating Sx (t) to S(t) , the survival function of T. [2]

i) Define, in terms of probabilities involving Tx, the force of mortality, t, ;.

41



Question

The Weibull distribution has a survival function given by:
Sx () = exp(-(At)*)

where A and [ are parameters (A, B> 0).
(iii) Derive an expression for the Weibull force of mortality in terms of A and p.

(iv) Sketch, on the same graph, the Weibull force of mortality for 0 < t < 5for the following pairs of values
of A and f:

~

> > >
[ I | I
—_ a O
v o n

~

— — —
T T
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Solution

(a)
(b)

Sx(t) =Pr[T; >1]
EITHER

: PrT >x+1
Since Pr[T, >t]=Pr[T >x+t T}x]=w
Pr[T = x]
and S(r)=Pi[T >1].

S(x+1)

then S,.(t) = S
X

OR

Since S.(f) =, p, . then using the consistency principle

x+tPo =t Px-xPo

x+tPo _ S(x+1) |
xPo S(x)

Therefore ,p,. =5,(1) =

(11)

EITHER

1 d
-0 P.T
B ot el

Hysr =

OR

Moo = lim —(Pr[T, <1+ h|T, >1)
h—0" h '
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Solution

(iii)

EITHEER

If the density function of T} 1s f, (). then we can write
d
S =S (Opgy =— E S, (1)

1 dS(r)

Therefore p, =_S—(I)E .
X

If S.(t)=exp (—(lt}ﬂ), therefore, we have

1 d
TP —w = P (—(MJB)

exp(—l(mﬂ)(

ot =— exp(-(an)P))(-2PpeF ) =2.fpr

OR

Sx(t) =exp [_I Wxisds

S0

f

0

] =exp| -0 |.

t
%LI;”JHSQ'S] “Hx4t = %[(?‘*ﬂﬁ] .

and hence

Myt

=paP,

44



Solution

(v)

Weibull hazard
Pad

Duration t

mmemelotg =1 lambda=1

seesens Pty = 1.5 lambda =
1

— ety = 0.5 lambda =
1

45



3.3

Gompertz Law of Mortality

This is a defined parametric survival model. The Gompertz function, named after Benjamin Gompertz, is an
exponential function, and it is often a reasonable assumption for middle ages and older ages. The function
increases exponentially with age. The law of mortality describes the age dynamics of human mortality rather
accurately in the age window from about 30 to 80 years of age.

Gompertz Law: u, = B.c*

Survival probability (p, can be found using the integral formula for the
same.
Under Gompertz law :-

tpx = gcx(ct—l)

where g = exp (— Log C)

Chance of Death per Year

Watch video explaining Covid 19 spread by Gompertz Curves e % w  ®m  ®  wo
Explaining Covid 19 Spread by Gompertz Curves- A short video - YouTube Age (Years)
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https://www.youtube.com/watch?v=O9nVqx4VdMM

3.4 Makeham Law of Mortality

The Makeham function is an age-independent component (the Makeham term, named after William Makeham).
Makeham'’s Law incorporates a constant term, which is sometimes interpreted as an allowance for accidental

deaths, not depending on age.
Q Makeham's Law: u, = A+ B.c”*

Survival probability (p, can be found using the integral formula for the same under Makeham's
law :-
tPx = Stgcx(Ct_l)

= ) and s = exp(—A4)

where g = exp (— Log C
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Relationship between Gompertz and Makeham’s law

The addition of the parameter alpha has a certainact on ™ wortaiy rate
the nature of the model. Firstly it increases the initial

starting point at age 0. The second affect is that it makes :
the demographic slope be more gradual at early ages.

This gives it the affect of a gradually increasing in o1
gradient until it converts to the Gompertz function.

When the Makeham model converts to the Gompertz 001
function the parameter alpha has little affect to the

overall model. From observing figure (1.2) it is clear to 0001 £

see the effect the alpha parameter has on the Makeham —
model. The initial increase of the parameter alpha from 0 a0 77"

to 0.0001 the model reveals a sharp jump from the initial :
mortality. As the alpha parameter continues to increase  ¢omn A
by 0.0001 the jumps between the previous model ’ 2° " % * 0 o
become small.

Figure 1.2: Period data from Sweden 2000. Set in a sera logarithmic scale, the
natural logarithm of mortality against age. The Makeham model has been fitted

with constant initial mortality and beta. The alpha parameter is increasing from 0
to 0.0012 by a factor of 0.0001.
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Recap

Survival analysis or survival modelling is the use of statistical methods for analyzing the data on the
occurrence of an event.

Various institutions like insurance and reinsurance firms and others face the need to do survival analysis in
order to plan for future.

T, = Future lifetime beyond age x of an individual who has survived to age x [measured in years and partial
years]. The additional years of life Tx beyond x is unknown and therefore is viewed as a continuous random
variable.

For 0 < x < w, F,(t) = P [T, < t]is the distribution function of T,

S,(t) =P[T, >t] =1-E./(t) is the survival function of T,.

Survival Probability : p, =1 —.q, = Sx(¢) : P, IS the probability that a life now aged x is still alive after t years.
Py = XP{— [ yrsS| 810, = E () = [} £)ds = [ D, ey, ds

Mortality Probability : ,q, = E.(¢) : ,q, Is the probability that a life now aged x dies within t years.

tOx TPk =1

Force of mortality is the instantaneous death rate for a life. It is denoted as u, = p(x)= force of mortality at

age x, given survival to age x. This is also called the “hazard rate” or “failure rate.” It is the continuous
equivalent of the discrete quantity q,.

Force of mortality at age x is defined as: u, = hlirggf% xP[T <x+h|T > x]
PDF of T, = S, (t) .pxs: & Density function of T, : £,.(£) = Py - U+t ;(0<t<w-—x)
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Continued

« Complete Expectation of Life considers complete years as well as partial or fractional years. It is
denoted by ¢,

© 6 =E(T) =[] t. Py tere dt = [ (P, dt

» The random variable K, is used to represent the curtate future lifetime for a life of exact age x (i.e. the
number of complete years lived after age x ).

» The curtate future lifetime of a life age x is: K,= [T,] where the square brackets denote the integer
part. [T, rounded down]. The Probability : P|K, = k| =Pk < T, <k + 1| =y PxQx+k

» Curtate expectation of life: e, = E(K,) = X1 (P«

* Assuming that the function ,p, is linear between integer ages, we have: ey = e, +%

» To calculate probabilities involving non-integer ages or durations, we can approximate the values for
non integer ages x + t where 0<t<1. The three approaches used are : UDD, CFM & Balducci
Assumption.

« UDD Assumption : If deaths are uniformly distributed between the ages of x and x+1, it follows that
«dy =tq, for0 <t <1.Thus, under UDD , the force of mortality is an increasing function over the year
of age x to x+1.

* Under the assumption of a constant force of mortality(CFM) between integer ages, we find the value

of the constant p using: p, = exp (— fol ux+tdt) =e * i.e. u= —In(py) Therefore:,p, =e " ;For
O<t<1
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Continued

For parametric models, we make an assumption regarding the underlying distribution, and then try to make
inferences about the survival function or the hazard function.

Exponential distribution is one of the common assumption taken in survival models. The hazard function
does not vary with time i.e., we assume that the hazard function is constant. Assume that T ~ Exp(A) with the
probability density function f(t) = A x exp(—At) and hazard function = A.

S(t) =p, = e * Therefore, .q, = 1 -e™*

Weibull model is an extension to the exponential survival model. Assuming T ~Weibull(A, p) with probability
density function f(t) = AptP lexp(—At?), where p > 0 and A > 0.

S.(t) =p.= el™t"] Therefore hazard function is given by h(t) = Ap * t®~V

p is called shape parameter: If p > 1 the hazard increases; If p = 1 the hazard is constant (exponential model)
& If p < 1 the hazard decreases.

The Gompertz function is an exponential function on which the namesake survival model is based. The law
of mortality describes the age dynamics of human mortality rather accurately in the age window from about
30 to 80 years of age.

Gompertz Law: u, = B.c* & Under Gompertz law :-,p, = gcx(ct

-1) where g = exp (_102 C)

The Makeham function is an age-independent component. Makeham'’s Law incorporates a constant term,
which is sometimes interpreted as an allowance for accidental deaths, not depending on age.

Makeham's Law: u, = A+ B.c* & Under Makeham'’s law :-;p, = stgcx(ct‘l)

where g = exp (— é) and s = exp(—A4)
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