#Q1A

#(a)

n=10

mu = 3.4

set.seed(2003)

x = rexp(n,1/mu)

mean(x);var(x)

#(b)

n =100

set.seed(2003)

x2 = rexp(n,1/mu)

mean(x2);var(x2)

#(c)

mu;mu”2

#By increasing the number of simulated values, the sample moments will be closer to the
population moments.

#In this case, due to random sampling , even when we increase n , the sample mean is farther
from the population mean.

#Q1B

n = ¢(35,32,27,21,34,30,28,24,7)

m = ¢(59,41,24,17,63,53,35,26,16)

#a

cor(n,m,method = "pearson")

cor(n,m,method = "kendall")

#The relationship between the two variables is highly positive.
#The relationship seems non - linear monotonic as the tau > rho

#b

#HO:Rs =0
#vs

#H1:Rs!=0

cor.test(n,m,
method ="spearman",
alternative = "two.sided")
# As the p - value is 0.0003527 , we can say we have sufficient evidence to reject the NULL
hypothesis.
#Class size does affect the average exam marks

#Q1C

model1 = Im(circumference~age-1,
data = Orange)

plot(model1,1)



#The red line shows that the errors seem to decrease when the fitted values increase

#There are too few observations to make an accurate decision

#Overall , there is no particular pattern evident from the graph, we can assume that errors and
fitted values have no relationship

#Q2A
set.seed(1729)
n=100
wait.times = -log(runif(n))/0.1
#(i)
n = length(wait.times)
xbar = mean(wait.times)
s = sd(wait.times)
alpha=1-0.925
xbar + ¢(-1,1)*qt(alpha/2,n-1,lower = FALSE)*s/sqrt(n)
#(ii)
hist(wait.times,
main = "Histogram of Waiting TImes",
xlab = "Waiting Times")
#The assumption that the waiting times are normally distributed seems to be incorrect
#lt looks that waiting times are distributed Exponentially

#Q2B
model1 = gim(Sepal.Length~Petal.Length + Species,
data = iris)
model2 = gim(Sepal.Length~Petal.Length + Sepal.Width,
data = iris)
#(a)
model1$deviance
model2$deviance
#As the residual deviance for model 2 is less than the residual deviance of the model 1.
#We can say model2 is better

#(b)

#Residual deviance decreases even when insignificant variables are added to the model

#A model with more parameters will always have a lower residual deviance even though it will
be more complex

#As a result we should use AIC in order to compare the two models.

#(c)
AIC(model1);AlC(model2)
#Lower the AIC the better, so we will still prefer model 2 over model 1



#(Please give 0 marks in (c) if ANOVA is used)

#Q2C

#(i)

heads = ¢(2,1,2,3,1,1,1,1,2,2)

#(ii)

#HO : p = 0.5/ Coin is fair

# vs

#H1 :p = 0.5/ Coin is unfair

test = binom.test(sum(heads),
length(heads)*4,
alternative = "two.sided")

test$p.value

#Since the p - value is greater than 5%, we can say that we have insufficient evidence to reject

HO

#The coin is fair

#Q3A

#(a)

mu = 132

sigma = 12.32

n=20

#The distribution of sample mean would be normal with mean = mu and standard deviation
sigma/sqrt(n)
mu;sigma/sqrt(n)

#(b)

set.seed(1947)

heights = rnorm(n,mu,sigma)
#(c)

f = density(heights)

mode = f$x[which.max(f$y)]
mode

#(d)
mode.height = numeric(10000)
set.seed(1947)
for(i in 1:10000){

height = rnorm(n,mu,sigma)

f = density(height)

mode.height[i] = f$x[which.max(f$y)]
}



#(e)
hist(mode.height,

freq = FALSE,

main = "Density of Model Height",
xlab = "Height",

col = "lightpink",

ylim = ¢(0,0.15))
curve(dnorm(x,mu,sigma/sqrt(n)),

col = "red",
Ity = 2,
add = TRUE)

#(f)

#The mode of heights does not seem to follow a N(mu,sigma/sqrt(n))

#The peak of the Normal distribution is much higher than the one suggested by the empirical
distribution

#THe distribution of the mode heights is symmeteric but flatter

#(9)
ggnorm(mode.height)

qqline(mode.height, Ity = 2, col = "green")
#The Q-Q plot strongly suggests that the mode heights do follow a Normal Distribution but not
the same as the sample mean

#Q3B
#(a)
claims_experience = read.csv("claims_experience.csv")
nrow(claims_experience)
#(b)
model1 = Im(CLAIM~AGE,

data = claims_experience)
a = summary(model1)
pf(a$fstatistic[1],a$fstatistic[2],a$fstatistic[3], lower = FALSE)
#The p - value is almost 0.
#AGE is a significant variable
#(c)
plot(model1,1)
plot(model1,2)
plot(model1,3)
plot(model1,5)
#(d)
glm1 = gim(CLAIM~AGE, data = claims_experience)



#(e)
glm2 = update(gim1,.~.+LOCATION+JOB+SEX)
glm2

#(f)
glm3 = update(glm2, family = gaussian("log"))
glm3

AIC(gim3);AlC(glm2)
#Using log link is better

##FORWARD SELECTION
#Null Model
mO0 = gim(CLAIM~1,
data = claims_experience,
family = gaussian(link = "log"))
#1 variable Model
m1a = update(mO0,.~.+AGE)
m1b = update(m0,.~.+LOCATION)
m1c = update(m0,.~.+JOB)
m1d = update(m0,.~.+SEX)
AIC(m1a);AIC(m1b);AlC(m1c);AlIC(m1d)
#m1c has the lowest AIC

##Two Variable Model

mZ2a = update(m1c,.~.+AGE)

m2b = update(m1ic,.~.+LOCATION)
m2c = update(m1c,.~.+SEX)
AIC(m2a);AlC(m2b);AlC(m2c)
#AIC of m2b is the lowest
AIC(m2b);AlC(m1c)

#Model m2b is better

#Three Variable Model

m3a = update(m2b,.~.+AGE)
m3b = update(m2b,.~.+SEX)
AIC(m3a);AlC(m3b)

#Model m3a is better

m4a = update(m3a,.~.+SEX)
AIC(m4a)



#Checking AIC of FULL Model
mfinal = gim(CLAIM~AGE*SEX*LOCATION*JOB,
data = claims_experience,
family = gaussian("log"))
AIC(mfinal)
#Since the AIC of the final model is lower than m4a, its better
m2 = update(mfinal,.~.-AGE:SEX:LOCATION:JOB)
AIC(m2)
#Since removing the 4 - way interaction increased the AIC, we can conclude we should keep all
variables and their interactions



