PUSASQF403 Financial Engineering 1

Time: 2 hours Total Marks: 60 marks

Note:

- 1) The candidate has option to either attempt question 4A or question 4B. Rest all questions are mandatory.
- 2) Numbers to the right indicate full marks.
- 3) The candidates will be provided with the formula sheet and graph papers (if required) for the examination.
- 4) Use of approved scientific calculator is allowed.

Q1

A. 5 Marks

Suppose that the price of a given stock, Xt at time t, follows a geometric Brownian motion with parameters μ and σ i.e. $dXt = \mu Xtdt + \sigma XtdWt$, where Wt is Wiener process. Let $Zt = Xt \lambda$, $0 < \lambda < 1$

Using Ito's lemma, show that Zt follows geometric Brownian motion with respect to the filtration on Wt.

B. 5 Marks

Explain why vega is positive for options, theta is negative for options and rho is positive for a call and negative for a put option.

C. 5 Marks

The stochastic process X follows the SDE given by = 0.25 dt + σ dWt where W is a standard Brownian motion. Consider a new process Y defined by Yt = f(t, Xt) where f(t, x) = exp(-t)*x^2.

- (i) Write an expression for dYt
- (ii) Under what condition will the process be a martingale?

Q2.

A. 5 Mark

A certain share pays a dividend every quarter which is 1% of the share price immediately before the ex-dividend date. Immediately before one such ex-dividend date, the share price is Rs 100. The risk-free interest rate is 5% per annum. Deduce whether it might be advantageous to exercise either of following American put options immediately:

- (a) expiry date in one month, exercise price=Rs 150.
- (b) expiry date in three months, exercise price=Rs 140.

B. 5 Mark

An investor bought a 5-year forward contract on 1 June 2004 to buy Rs.400 nominal of a stock that pays coupons of 5 % pa payable half yearly on 31 March, 30 September. The stock is also expected to pay out a lump sum of Rs.50% of nominal value on 1 June 2008. The stock is expected to yield 5.5% pa effective if purchased on 1 June 2004 and held forever. Calculate the forward price for the contract, given that the risk free rate of interest is 6% per annum and the current price of the stock is Rs. 133.33.

C. 5 Mark

The bank balance of a young Actuarial student follows the Weiner process with a drift of 100 per month and a variance of 4000 per month.

- i) At the beginning of the year, the bank balance is Rs. 200. What is the probability of the bank balance being greater than zero at the end of the year?
- **ii)** What should be the starting bank balance so that the probability of a positive bank balance is 99%?

Q3.

A. 5 Marks

Derive an expression for the put-call parity of a European option that has a dividend payable prior to the exercise date.

B. 5 Marks

Using the standard Black-Scholes call option pricing formula, calculate the price of an European call on a non-dividend paying stock with the following features: current price of the underlying stock: 200, strike price: 200, time to expiration: 1 year, risk free rate: 6% pa [continuously compounded], volatility: 25% pa. State assumptions, if any.

C. 5 Marks

The price of a stock is currently Rs. 500. Over each of the next two 3-month periods the stock price is expected to go up by 6% or down by 5%. The risk free interest is 5% per annum with continuous compounding.

- i) What is the value of a six-month European call option with a strike price of Rs.510?
- ii) What is the value of a six-month European put option with a strike price of Rs.510?

A. 15 Marks

i) Define the formula used for pricing a European call option under the Black-Scholes framework, defining all the terms used.

A stock following Geometric Brownian Motion is currently priced Rs. 300, risk free interest rate is 6% per annum, and the volatility is 30% per annum.

- ii) An investor decides to buy a 2-month European put option assuming the stock is non-dividend paying and with a current strike price of Rs. 300. Calculate how much the investor should be prepared to pay.
- iii) He later identifies that a dividend of Rs. 9 is expected in a month's time. Calculate the price the investor will be expected to pay.
- iv) The investor attempts to find the price of the put option on the basis of initial assumption using a two-step binomial tree. Derive the price he will calculate, stating your assumptions.

B. 15 Marks

- i) State what is meant collectively by the Greeks of an option?
- ii) Define delta for a derivative.
- iii) Assume that the assumptions underlying the Black-Scholes model hold.

Derive a formula for the delta of a European call option for a non-dividend paying stock.

Evaluate the delta of an at-the-money call, when the risk free rate is zero, time to expiry is one year, and volatility is 20% p.a.

iv) One investor, A, holds £1 million of equity. Another, B, holds £1 million in cash, and the call option evaluated in (ii), over £1 million of the same equity. The equity market rises instantly by 20%. Explain which of these investors now owns greater value.