PUSASQF404

Fixed Income Products

Time: 2 hours Total Marks: 60 marks

Note:

- 1) The candidate has option to either attempt question 4A or question 4B. Rest all questions are mandatory.
- 2) Numbers to the right indicate full marks.
- 3) The candidates should only write the option alphabet for answers in case of the MCQ based questions.
- 4) Use of approved scientific calculator is allowed.

Q1. 15 Marks

- 1) Floating-rate bonds are the best way to reduce:
 - a. credit risk.
 - b. inflation risk,
 - c. interest rate risk.
 - d. ALL of the above
- 2) Compared with developed markets bonds, emerging markets bonds most likely:
 - a. offer lower yields.
 - b. exhibit higher risk.
 - c. benefit from lower growth prospects.
 - d. None of the above
- 3) A zero-coupon bond matures in 15 years. At a market discount rate of 4.5% per year and assuming annual compounding, the price of the bond per 100 of par value is closest to:
 - a. 51.30
 - b. 51.67
 - c. 71.62
 - d. 31.45
- 4) Bonds issued by the World Bank would most likely be:
 - a. quasi-government bonds
 - b. global bonds
 - c. supranational bonds
 - d. None of the above
- 5) The distinction between investment grade and non investment grade bonds is best described by
 - a. tax status.
 - b. credit quality.
 - c. maturity dates.
 - d. All of the above.

- 6) A floating-rate note has a quoted margin of +50 basis points and a required margin of +75 basis points. On its next reset date, the price of the note will be:
 - a. equal to par value.
 - b. less than par value
 - c. greater than par value
 - d. not enough information
- 7) The 4-year spot rate is 8.25%, and the 3-year spot rate is 9.05%. What is the 1-year forward rate three years from today?
 - a. 5.885%
 - b. 6.850%
 - c. 6.059%.
 - d. 7.354%
- 8) A yield curve constructed from a sequence of yields-to-maturity on zero-coupon bonds is the:
 - a. par curve.
 - b. spot curve.
 - c. forward curve
 - d. None of these.
- 9) The interest rate risk of a fixed-rate bond with an embedded call option is best measured by:
 - a. effective duration.
 - b. modified duration.
 - c. Macaulay duration
 - d. Convexity
- **10)** A limitation of calculating a bond portfolio's duration as the weighted average of the yield durations of the individual bonds that compose the portfolio is that:
 - a. assumes a parallel shift to the yield curve.
 - b. is less accurate when the yield curve is less steeply sloped.
 - c. is not applicable to portfolios that have bonds with embedded options
 - d. All of these.

Q2.

A. 5 Marks

An analyst needs to assign a value to an illiquid four-year, 4.5% annual coupon payment corporate bond. The analyst identifies two corporate bonds that have similar credit quality: A is a three-year, 5.50% annual coupon payment bond priced at 1075.00 per 1000 of par value, and the other B is a five-year, 4.50% annual coupon payment bond priced at

1047.50 per 1000 of par value. Using matrix pricing, the estimated price of the illiquid bond per 1000 of par value?

B. 5 Marks

Identify the relationships among a bond's price, coupon rate, maturity, and market discount rate (yield-to-maturity).

C. 5 Marks
Following table shows the forward rates, find the 1 year, 2 year, 3 year, 4 year spot rates?

Time period	Forward rate %
0y1y	1.88
1y1y	2.77
2y1y	3.54

4.12

Q3.

3y1y

A. 5 Marks

A 6% annual coupon corporate bond with two years remaining to maturity is trading at a price of 102.125. The two-year, 4% annual payment government benchmark bond is trading at a price of 103.750.

Calculate the G-spread(the spread between the yields-to-maturity on the corporate bond and the government bond having the same maturity)?

B. Explain the role of Matrix Pricing.

5 Marks

C.

BOND	PRICE	COUPON RATE	TIME TO MATURITY
A	101.886	5%	2 YEARS
В	100	6%	2 YEARS
C	97.327	5%	3 YEARS

Referring above table, Calculate: YTM for each bond?

Q4A. 15 Marks

A German bank holds a large position in a 7.25% annual coupon payment corporate bond that matures on 4 April 2036. The bond's yield-to-maturity is 7.44% for settlement on 27 June 2021, stated as an effective annual rate. That settlement date is 83 days into the 360-day year using the 30/360 method of counting days.

- i. Calculate the full price of the bond per 100 of par value.
- ii. Calculate the approximate modified duration and approximate convexity using a 1 bp increase and decrease in the yield-to-maturity.

- iii. Calculate the estimated convexity-adjusted percentage price change resulting from a 100 bp increase in the yield-to-maturity.
- iv. Compare the estimated percentage price change with the actual change, assuming the yield-to-maturity jumps to 8.44% on that settlement date.

Q4B. 15 Marks

1.

Bond G, described in the exhibit below, is sold for settlement on 16 June 2021.

Annual Coupon Coupon Payment Frequency Interest Payment Dates Maturity Date Day Count Convention Annual Yield-to-Maturity	5% Semi Annual 10 April and 10 October 10 October 2023 30/360 4%
---	--

Calculate on 16 June 2021,

- i. The Full price of the BOND
- ii. Accrued interest
- iii. Flat Price

2.

- i. Define key rate duration and describe the use of key rate durations in measuring the sensitivity of bonds to changes in the shape of the benchmark yield curve.
- ii. Explain how a bond's maturity, coupon, and yield level affect its interest rate risk.