INSTITUTE OF ACTUARIAL
& QUANTITATIVE STUDIES




Topics to be covered

1.

2.

Introduction

Bayesian Estimate

Bayesian Inference & Estimation
Posterior Distribution of Parameter

Bernoulli Random Variable



1

Introduction

Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge about
parameters in a statistical model is updated with the information in observed data.

The background knowledge is expressed as a prior distribution and combined with observational data in the
form of a likelihood function to determine the posterior distribution. The posterior can also be used for making
predictions about future events.

This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models to
deriving inference, model checking and refinement.



2 Bayesian Estimate

* The Bayesian estimate of the risk parameter under the squared-error loss function is the mean of the posterior
distribution.

+ Likewise, the Bayesian estimate of the mean of the random loss is the posterior mean of the loss conditional on
the data.

* In general, the Bayesian estimates are difficult to compute, as the posterior distribution may be quite
complicated and intractable. There are, however, situations where the computation may be straightforward, as
in the case of conjugate distributions.



Bayesian Inference and Estimation

* The classical and Bihlmann credibility models update the prediction for future losses based on recent claim
experience and existing prior information.

* Inthese models, the random loss variable X has a distribution that varies with different risk groups.

» Based on a sample of n observations of random losses, the predicted value of the loss for the next period is
updated.

* The predictor is a weighted average of the sample mean of X and the prior mean, where the weights depend on
the distribution of X across different risk groups.



3 Bayesian Inference and Estimation

«  We formulate the aforementioned as a statistical problem suitable for the Bayesian approach of statistical
inference and estimation. The set-up is summarized as follows:

i.  Let X denote the random loss variable (such as claim frequency, claim severity, and aggregate loss) of
a risk group. The distribution of X is dependent on a parameter 6, which varies with different risk
groups and is hence treated as the realization of a random variable 0.

ii. ©®has a statistical distribution called the prior distribution. The prior pdf of © is denoted by fo(8]y) (or
simply fo(0)), which depends on the parameter y, called the hyperparameter.

iii. The conditional pdf of X given the parameter 0 is denoted by f(X|@)(x | ©). Suppose X = {X;,...X,}is a

random sample of X, and x = (x4,..x,,) is a realization of X. The conditional pdf of X is :

n
faeyEo =] | @lo)
=1 x|0
We call f;e(x | 6) the likelihood function.
iv. iv. Based on the sample data x, the distribution of 0 is updated. The conditional pdf of O given x is
called the posterior pdf, and is denoted by fgx (8 | x).
v. 5 An estimate of the mean of the random loss, which is a function of 0, is computed using the
posterior pdf of ©. This estimate, called the Bayes estimate, is also the predictor of future losses.



3 Bayesian Inference and Estimation

Bayesian inference differs from classical statistical inference in its treatment of the prior distribution of the
parameter 8. Under classical statistical inference, 0 is assumed to be fixed and unknown, and the relevant entity

for inference is the likelihood function.
For Bayesian inference, the prior distribution has an important role. The likelihood function and the prior pdf

jointly determine the posterior pdf, which is then used for statistical inference.



Posterior distribution of parameter

Given the prior pdf of ® and the likelihood function of X, the joint pdf of ® and X can be obtained as follows
fox(8,%) = f(x10)(x | 6) * f_0 ()
Integrating out © from the joint pdf of ® and X, we obtain the marginal pdf of X as
= [ Fixie)@16) fo(®)
GEQ@

where Qg is the support of ©.
Now we can turn the question around and consider the conditional pdf of © given the data x, i.e. fO| X (8 | x).
Combining the above equations , we have

f@X(Br X)

flx) = —=——=
f@lX( | ) fx(x)

_ fxje(x160) fo(0)

Joea, fx10(x16) fo (6)d6
The posterior pdf describes the distribution of ® based on prior information about ® and the sample data x.

Bayesian inference about the population as described by the risk parameter © is then based on the posterior
pdf.




5 Bernoulli Random Variable

«  Example:
Let X be the Bernoulli random variable which takes value 1 with probability 8 and 0 with probability 1 - 6.
If © follows the beta distribution with parameters o and B, i.e. @ ~ B(a, ), calculate the posterior pdf of 0
given X.

« Solution:
As X is Bernoulli, the likelihood function of X is
fxjo (x| 0) =6*(1—0)'" ,forx=0,1.
Since © is assumed to follow the beta distribution with hyperparameters a and [3, the prior pdf of © is

_ 9&—1(1_9),8—1
fo(6) = —Fp— for8e(o 1)

Thus, the joint pf—pdf of ® and X is
9a+x—1(1 _ 9)(B—x+1)—1
0,x) = x|6 0) =
fox (6,%) = fxjo(x10)fo (6) e

from which we compute the marginal pf of X by integration to obtain
1 9a+x—1(1 _ 9)(ﬁ—x+1)—1

fe () = fo ) d6

_Bla+x,p—x+1)
- B(a,B)




5 Bernoulli Random Variable

* Thus, we conclude

_ fG)X(Q! X)
f®|X(9|x) = e (0

9a+x—1(1 _ 9)(ﬁ—x+1)—1

Bla+x,—x+1)
which is the pdf of a beta distribution with parameters o +x and  —x+1.
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5 Bernoulli Random Variable

«  Example:
In the previous example , if there is a sample of n observations of X denoted by X = {X;, ... X;, }, compute
the posterior pdf of 0.

e Solution:

We first compute the likelihood of X as follows
n

fxie(x16) = 1—[ (1 — @)~

=1
- gzxi(l - 9)2(1 - x;)
i=1 i=1

fox(0,x) = frjo(x10)fe(6)
= [QZ?zl Xi (1 — Q)Z?zl(l—xi)] [
glatn®-1(1 _ g)(B+n-nD)-1
) B(a, )

and the joint pf-pdf is

0% (1 - 9)3-1]
B(a,p)
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5 Bernoulli Random Variable

1
fx() = [ fox(6.2)d0
0 1 9(a+nf)—1(1 _ 8)(B+n—nf)—1
- f d6
0

- B(a,B)
_ B(a+nx,p +n—nx)

B(a, B)

_ f@X(Gl X)
f@|x(9|x) = £.00)

9(a+nf)—1(1 _ 9)([3+n—nf)—1
- B(a + nx,f +n — nx)
and the posterior pdf of O follows a beta distribution with parameters a + nx
and 8 + n - nx.

we conclude that
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5 Bernoulli Random Variable

Note that the denominator in combined equation is a function of x but not 6.

Denoting
1

) = o0 o(8)d0

we can rewrite the posterior pdf of © as
fox(01x) = K(x)frje(x|6)fe(6)
afrie(x]0)fo(0)

« K(x) is free of © and is a constant of proportionality. It scales the posterior pdf so that it integrates to 1. The

expression fye(x|6)fe(0) enables us to identify the functional form of the posterior pdf in terms of 6
without computing the marginal pdf of X.
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