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Introduction
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1.0

CLAIMS

                                              FREQUENCY                                                AMOUNT

Both are random and 
have a unique distribution 

Therefore, to model aggregate claims, we deal with two distributions at the same time.

By combining these two distributions, we define a unique aggregate distribution known as 
Compound Distribution.



Models for short-term insurance contracts 
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2.0

Many forms of non-life insurance can be regarded as short-term contracts, for example motor insurance.

Some forms of life insurance also fall into this category, for example group life and one-year term assurance 
policies. 

A short-term insurance contract can be defined as having the following attributes: 

• The policy lasts for a fixed, and relatively short, period of time, typically one year. 

• The insurance company receives from the policyholder(s) a premium. 

• In return, the insurer pays claims that arise during the term of the policy. 



  

Features
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Collective Risk Model
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Moments of S
To calculate the moments of S, conditional expectation results are used, conditioning on the number of claims, N. 
To find E[S], apply the identity: 

E[S] = E[E[S|N]]. 

Formula has a very natural interpretation. It says that the expected aggregate claim amount is the product of the 
expected number of claims and the expected individual claim amount. 
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Moments of S
To find an expression for var[S], apply the identity: 

var[S] = E[var[S|N]] + var[E[S|N]] 

var(S|N) can be found by using the fact that individual claim amounts are independent. 
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Moments of S
To find an expression for MGF of S, 
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Individual Risk Model
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Individual Risk Model

  

11

5.0



Individual Risk Model
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Compound Poisson distribution 
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Compound Binomial distribution 
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Compound Binomial distribution 

  

15

5.2



Compound Negative Binomial distribution 
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Compound Negative Binomial distribution 
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Compound Negative Binomial distribution 
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Parameter variability and uncertainty
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Introduction

In some cases, parameters of the assume distributions may also be uncertain.
Example: Poisson parameter for claims arising out of a motor insurance policy for a good driver and a bad 
driver.

In such cases, the resultant compound distribution for aggregate claims will need to take into account this 
parameter uncertainty, by usually modelling the parameter using a known distribution.

6.0
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6.0 Parameter variability and uncertainty
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Approximation of Aggregate Distribution
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Approximation of Aggregate Distribution
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7.0



Approximation of Aggregate Distribution
CT6 April 2012 Q4

Claims on a particular type of insurance policy follow a compound Poisson process with annual claim rate per 
policy 0.2. Individual claim amounts are exponentially distributed with mean 100. In addition, for a given claim there 
is a probability of 30% that an extra claim handling expense of 30 is incurred (independently of the claim size). The 
insurer charges an annual premium of 35 per policy. 

Use a normal approximation to estimate how many policies the insurer must sell so that the insurer has a 95% 
probability of making a profit on the portfolio in the year.
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Approximation of Aggregate Distribution
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