Lecture

Class: MSc

Subject: Statistical & Risk Modelling - 2

Chapter: Unit 3 Chapter 6

Chapter Name: Theory of Decision Making

Agenda

- 1.0 Introduction
- 1.1 Zero-Sum 2 game players
- 1.2 Strategy
- 1.3 Statistical Game
- 1.4 Decision criteria

1.0 Introduction

In complex choices and games, it is not always straightforward to make decisions.

We will use game theory and statistical criterion to make these decisions.

1.1 Zero-Sum 2 game players

Example:

	А		
		Н	Т
В	Н	+1	-1
	Т	-1	+1

1) Domination:

(in Rs. 100 Crores)

	Investor				
		RIL	TCS	HUL	HDFC BANK
Governmen	Remove	2	0	1	4
Governmen t	Reduce	1	2	2	3
	Maintain	4	1	3	2

2) Minimax Strategies:

Strategy that minimizes max loss and maximizes minimum gain.

Example:

	Player A			
		1	II	III
Dlavor P	1	6	2	1
Player B	2	4	3	5
	3	-3	1	3

3) Saddle Points:

- Equilibrium point in a strategy.
- Element that is the largest in its column and smallest in its row.
- If saddle point exists, minimax strategy is spy-proof.

Example:

	I	II	III
1	4	1	-4
2	3	2	3
3	-4	1	4

If B decides to switch to Strategy I

Not all matrices have saddle points.

For what values of x and y does the matrix:

2 7 x
y 3 1
6 8 5

Have a saddle point?

3) Randomized strategy:

Example:

	I	II
1	7	-6
2	1	5

Assume the worst outcome in every case and minimize the total max loss.

1.3 Statistical games

Game between nature - that controls features of a population, and a statistician, trying to make a decision about the population

Example:

- Coin is either balanced or two- headed.
- 1 coin toss will be done.
- Statistician has to decide whether it is balanced or 2 headed.
- If correct then no reward, but if incorrect then a penalty of 1.

	X (2 H)	Y (H T)
A (2 H)	0	1
B (H T)	1	0

Consider all types of decisions and calculate Expected loss for both scenarios A & B.

?

A statistician is observing values from a Bin(2,p) distribution. He knows that p is either equal to $\frac{1}{4}$ or $\frac{1}{2}$, and he is trying to choose between these two values. He observes a single value x from the distribution. He proposes to use one of the following four decision functions:

$d_1(x)$:	set $p = 1/4$	when $x=0$
	set $p = 1/2$	when $x=1$ or 2
$d_2(x)$:	set $p = 1/4$	when $x=0$ or 1
	set $p = 1/2$	when x=2
$d_3(x)$:	set $p = 1/4$	when $x=0$, 1 or 2
$d_4(x)$:	set $p = 1/2$	when x=0, 1 or 2

If he incorrectly concludes that p = 1/4, he suffers a loss of 1. if he incorrectly concludes that p = 1/2, he suffers a loss of 2.

Find the risk function for each decision function, and find the decision function that minimises the maximum expected loss.

1.4 Decision criteria

Minimax criteria:

Seen earlier.

Bayes criteria:

Decision making using additional knowledge of prior distributions.

Example:

If probability of 2H is 2/3, 1/6, 1/3, then which is the most optimal strategy as per Bayes criterion?

The statistician in the previous example has a prior feeling that it is about equally likely that p will be equal to ¼ or ½. Calculate the Bayes risk for each of the four decision functions. Which decision function has the smallest Bayes risk?

?

A consumer has to decide whether to take out a travel insurance policy which covers him for all trips over the next year or to purchase a separate policy each time he makes a trip he isn't sure how many trips we will make.

An annual policy would cost 95.

A separate policy for each trip cost 30.

He estimates that the probability distribution of the number of trips he will take over the next year, X, is as follows:

Number of trips, x	P(X=x)
1	0.1
2	0.2
3	0.3
4	0.3
5	0.1

Determine the minimax and Bayes decision.