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• Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge 

about parameters in a statistical model is updated with the information in observed data.

• The background knowledge is expressed as a prior distribution and combined with observational data in the 

form of a likelihood function to determine the posterior distribution. The posterior can also be used for 

making predictions about future events.

• This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models to 

deriving inference, model checking and refinement.
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• The Bayesian estimate of the risk parameter under the squared-error loss function is the mean of the 

posterior distribution.

• Likewise, the Bayesian estimate of the mean of the random loss is the posterior mean of the loss conditional 

on the data.

• In general, the Bayesian estimates are difficult to compute, as the posterior distribution may be quite 

complicated and intractable. There are, however, situations where the computation may be straightforward, 

as in the case of conjugate distributions.
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• The classical and Bühlmann credibility models update the prediction for future losses based on recent claim 

experience and existing prior information.

• In these models, the random loss variable X has a distribution that varies with different risk groups.

• Based on a sample of n observations of random losses, the predicted value of the loss for the next period is 

updated.

• The predictor is a weighted average of the sample mean of X and the prior mean, where the weights depend 

on the distribution of X across different risk groups.
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• We formulate the aforementioned as a statistical problem suitable for the Bayesian approach of statistical 

inference and estimation. The set-up is summarized as follows:

i. Let X denote the random loss variable (such as claim frequency, claim severity, and aggregate loss) of 

a risk group. The distribution of X is dependent on a parameter θ, which varies with different risk 

groups and is hence treated as the realization of a random variable Θ.

ii. Θhas a statistical distribution called the prior distribution. The prior pdf of Θ is denoted by 𝑓Θ(𝜃|𝛾) (or 

simply 𝑓Θ(θ)), which depends on the parameter γ , called the hyperparameter.

iii. The conditional pdf of X given the parameter θ is denoted by 𝑓 𝑋 Θ (x | θ). Suppose X = {𝑋1, …𝑋𝑛} is a 

random sample of X , and x = (𝑥1, . . 𝑥𝑛) is a realization of X. The conditional pdf of X is :

𝑓 𝑋 Θ 𝑥 𝜃 =ෑ

𝑖=1

𝑛

𝑓

𝑋|Θ

𝑥𝑖 𝜃

We call 𝑓𝑥|Θ(x | θ) the likelihood function.

iv. iv. Based on the sample data x, the distribution of Θ is updated. The conditional pdf of  given x is 

called the posterior pdf, and is denoted by 𝑓Θ|𝑋 (𝜃 | 𝑥).

v. 5 An estimate of the mean of the random loss, which is a function of Θ, is computed using the 

posterior pdf of Θ. This estimate, called the Bayes estimate, is also the predictor of future losses.



Bayesian Inference and Estimation

7

3

• Bayesian inference differs from classical statistical inference in its treatment of the prior distribution of the 

parameter θ. Under classical statistical inference, θ is assumed to be fixed and unknown, and the relevant 

entity for inference is the likelihood function.

• For Bayesian inference, the prior distribution has an important role. The likelihood function and the prior pdf 

jointly determine the posterior pdf, which is then used for statistical inference.
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• Given the prior pdf of Θ and the likelihood function of X, the joint pdf of Θ and X can be obtained as follows

𝑓Θ𝑋(𝜃, 𝑥) = 𝑓 𝑋 Θ (𝑥 | 𝜃) ∗ 𝑓_Θ (𝜃)

• Integrating out θ from the joint pdf of Θ and X, we obtain the marginal pdf of X as

𝑓𝑋 𝑥 = න
𝜃𝜖ΩΘ

𝑓 𝑋 Θ 𝑥 𝜃 𝑓Θ(𝜃)

• where ΩΘ is the support of Θ.

• Now we can turn the question around and consider the conditional pdf of Θ given the data x, i.e. f| X (θ | x). 

Combining the above equations , we have

𝑓Θ|𝑋 𝜃 𝑥 =
𝑓Θ𝑋 𝜃, 𝑥

𝑓𝑋 𝑥

=
𝑓𝑋|Θ 𝑥 𝜃 𝑓Θ 𝜃

𝜃𝜖ΩΘ׬
𝑓𝑋|Θ 𝑥 𝜃 𝑓Θ 𝜃 𝑑𝜃

• The posterior pdf describes the distribution of Θ based on prior information about Θ and the sample data x. 

Bayesian inference about the population as described by the risk parameter Θ is then based on the posterior 

pdf.
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• Example:

Let X be the Bernoulli random variable which takes value 1 with probability θ and 0 with probability 1 − θ. 

If Θ follows the beta distribution with parameters α and β, i.e. Θ ∼ B(α, β), calculate the posterior pdf of Θ
given X.

• Solution:

As X is Bernoulli, the likelihood function of X is

𝑓𝑋|Θ (𝑥 | 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 , for x = 0, 1.

Since Θ is assumed to follow the beta distribution with hyperparameters α and β, the prior pdf of Θ is

𝑓Θ 𝜃 =
𝜃𝛼−1 1−𝜃 𝛽−1

𝐵 𝛼,𝛽
, for θ ∈ (0, 1)

Thus, the joint pf–pdf of Θ and X is

𝑓Θ𝑋 𝜃, 𝑥 = 𝑓𝑋|Θ 𝑥 𝜃 𝑓Θ 𝜃 =
𝜃𝛼+𝑥−1 1− 𝜃 𝛽−𝑥+1 −1

𝐵 𝛼, 𝛽
.

from which we compute the marginal pf of X by integration to obtain

𝑓𝑋 𝑥 = න
0

1𝜃𝛼+𝑥−1 1 − 𝜃 𝛽−𝑥+1 −1

𝐵 𝛼,𝛽
𝑑𝜃

=
𝐵 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

𝐵 𝛼, 𝛽
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• Thus, we conclude

𝑓Θ|𝑋 𝜃 𝑥 =
𝑓Θ𝑋 𝜃, 𝑥

𝑓𝑋 𝑥

=
𝜃𝛼+𝑥−1 1 − 𝜃 𝛽−𝑥+1 −1

𝐵 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
which is the pdf of a beta distribution with parameters α +x and β −x+1.
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• Example: 

In the previous example , if there is a sample of n observations of X denoted by X = {𝑋1, …𝑋𝑛 }, compute 

the posterior pdf of Θ.

• Solution:

We first compute the likelihood of X as follows

𝑓𝑋|Θ 𝑥 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1− 𝜃 1−𝑥𝑖

= 𝜃෍

𝑖=1

𝑛

𝑥𝑖 1 − 𝜃 ෍

𝑖=1

𝑛

1 − 𝑥𝑖

and the joint pf–pdf is

𝑓Θ𝑋 𝜃, 𝑥 = 𝑓𝑥|Θ 𝑥 𝜃 𝑓Θ(𝜃)

= 𝜃σ𝑖=1
𝑛 𝑥𝑖 1 − 𝜃 σ𝑖=1

𝑛 1−𝑥𝑖
𝜃𝛼−1 1 − 𝜃 𝛽−1

𝐵 𝛼, 𝛽

=
𝜃 𝛼+𝑛 ҧ𝑥 −1 1 − 𝜃 𝛽+𝑛−𝑛 ҧ𝑥 −1

𝐵 𝛼,𝛽
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𝑓𝑋 𝑥 = න
0

1

𝑓Θ𝑋 𝜃, 𝑥 𝑑𝜃

= න
0

1𝜃 𝛼+𝑛 ҧ𝑥 −1 1− 𝜃 𝛽+𝑛−𝑛 ҧ𝑥 −1

𝐵 𝛼, 𝛽
𝑑𝜃

=
𝐵 𝛼 + 𝑛 ҧ𝑥, 𝛽 + 𝑛 − 𝑛 ҧ𝑥

𝐵 𝛼, 𝛽
we conclude that

𝑓Θ|𝑋 𝜃 𝑥 =
𝑓Θ𝑋 𝜃, 𝑥

𝑓𝑥 𝑥

=
𝜃 𝛼+𝑛 ҧ𝑥 −1 1 − 𝜃 𝛽+𝑛−𝑛 ҧ𝑥 −1

𝐵 𝛼 + 𝑛 ҧ𝑥, 𝛽 + 𝑛 − 𝑛 ҧ𝑥
and the posterior pdf of  follows a beta distribution with parameters α + n ҧ𝑥
and β + n − n ҧ𝑥.
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Note that the denominator in combined equation  is a function of x but not θ.

Denoting

𝐾 𝑥 =
1

𝑓𝜃𝜖ΩΘ𝑓𝑋|Θ 𝑥 𝜃 𝑓Θ 𝜃 𝑑𝜃

we can rewrite the posterior pdf of Θ as

𝑓Θ|𝑥 𝜃 𝑥 = 𝐾 𝑥 𝑓𝑥|Θ 𝑥 𝜃 𝑓Θ 𝜃

𝛼𝑓𝑥|Θ 𝑥 𝜃 𝑓Θ(𝜃)

• K(x) is free of θ and is a constant of proportionality. It scales the posterior pdf so that it integrates to 1. The 

expression 𝑓𝑥|Θ 𝑥 𝜃 𝑓Θ(𝜃) enables us to identify the functional form of the posterior pdf in terms of θ 

without computing the marginal pdf of X.


