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Introduction
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Insurance Companies

Premiums                                                               Claims

Certain Random

Frequency & Severity

Fitting a probability distribution to them 

LOSS DISTRIBUTIONS

HELPS IN: 

i. Premium calculation

ii. Reserve calculation

iii. Solvency

iv. Reinsurance arrangement

1.0



Generating Functions

1) Probability Generating Functions

The probability generating function of a discrete random variable is a power series representation 

(the generating function) of the probability mass function of the random variable.

Pgf is used for discrete distributions.

PX t = E tX = ෍

𝑥=0

∞

𝑝 𝑥 𝑡𝑋
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Generating Functions

2) Moment Generating Functions 

A moment generating function (MGF) can be used to generate moments (about the origin) of the
distribution of a random variable (discrete or continuous). Although the moments of most distributions
can be determined directly by evaluation using the necessary integrals or summation, utilising moment
generating functions sometimes provides considerable simplifications.

MX t = E[etX]
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Generating Functions

3) Cumulant generating functions

A cumulant generating function (CGF) takes the moment of a sequence of numbers that describes the 
distribution in a useful, compact way. The first cumulant is the mean, the second the variance, and the third 
cumulant is the skewness or third central moment.

CX t = lnMX(t)
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Exponential Distribution

A random variable X has the exponential distribution with parameter λ > 0 if it has CDF 

F(x) = 1 −𝑒−𝜆𝑥, x > 0 

In that case, we write X ~ Exp(λ).

E(X) =

var(X) = 

MGF =

Practical Application:

Normally used to determine the inter-event times. 

Example- time until next claim, time between 2 claims.
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Gamma Distribution

The random variable X has a gamma distribution with parameters α > 0 and λ > 0 if it has PDF

f(x)=
𝜆𝛼

Γ𝛼
𝑥𝛼−1𝑒−𝜆𝑥 , x > 0

In that case, we write X ~ Ga(α, λ). The mean and variance of X are 

MGF = 

CGF =

E(X ) =

Var(X ) =

Skew(X) = 

Practical Application:

Normally used to model size of Insurance claims.
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Normal distribution

Normal distribution is a type of continuous probability distribution for a real-valued random variable

f(x)=
1

𝜎√2𝜋
𝑒
−
1

2

𝑥−𝜇

𝜎

2

E(X) =

var(X) = 

MGF =

Practical Application:

Used for approximation, fitting distribution to symmetrical data.
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Lognormal distribution

The definition of the lognormal distribution is very simple: X has a lognormal distribution if log(X ) has a normal 
distribution. When log(X ) ~ N(𝜇, 𝜎2), X ~ LogN(𝜇, 𝜎2)

E(X) =

var(X) = 

MGF =

Practical Application:

Black-Scholes Model for option pricing, to model income distribution of people.

Normal 
distribution

Lognormal 
distribution

LOG(X)
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Pareto distribution

A random variable X has the Pareto distribution with parameters α > 0 and λ > 0 if it has CDF

F(x)= 1-
𝜆

𝜆+𝑥

𝛼
, 𝑥 > 0

In that case, we write X ~ Pa(α, λ). 

It is easily checked by differentiating F(x) with respect to x that the Pareto distribution has PDF

f(x)= 
𝛼𝜆𝛼

𝜆+𝑥 𝛼+1 , x > 0

Practical Application:

Few large, many small scenarios (like distribution of wealth, human population in cities and villages.)

To derive mean and variance we will have to understand Three-Parameter Pareto Distribution.
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Three-parameter Pareto distribution

The pdf of three-parameter Pareto distribution is:

f(x) = 
Γ 𝛼+𝑘 𝜆𝛼

Γ(𝛼)Γ(𝑘)

𝑥𝑘−1

𝜆+𝑥 𝛼+𝑘 , 𝑥 > 0

Pareto 
distribution

Three-parameter 
Pareto distribution

Parameter k 
(shape)
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Three-parameter Pareto distribution

Pareto Distribution:

E(X) =

Var(X) =

Median =

Three Parameter Pareto:

E(X) = 
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Burr distribution

F(x)= 1-
𝜆

𝜆+𝑥𝛾

𝛼
, 𝑥 > 0

This is the CDF of the transformed Pareto or Burr distribution. 

Median =

E 𝑋𝑘 =

E(X) =

var(X) 

Practical Application:

Flexible to fit, can be used instead of Normal distribution if data is skewed.

Pareto 
distribution

Burr 
distribution

Parameter 𝛾
(Shape)
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Weibull distribution

To control flexibility of exponential distributions i.e. To increase/ decrease frequency of extreme events, we 
can use the Weibull distribution by adding a shape parameter 𝛾.

Exponential F(x) =1 - exp(−λx) 

There is a further possibility. Set 

F(x) =1 - exp −𝜆𝑥𝛾 , 𝛾 > 0

E(X) =

var(X) = 

Median =

Practical Application:

Used in Extreme Value Theory, can be used to control flexibility of exponential distribution, inter-event 
times with non-constant rates.
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Weibull distribution

Exponential 
distribution

Weibull 
distribution

Parameter 𝛾
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𝛾 < 1
exp (𝛾=1)
𝛾>1



Methods Of Estimation

• Practically, we will not have a ready distribution for claims.

• We need to fit a distribution to the available data.

• For this we will need to estimate the parameters of such distributions.

• Methods of estimation 

1. Method of moments

2. Maximum Likelihood Estimator

3. Method of Percentiles
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Method of moments

18

4.1

The method of moments is a way to estimate population parameters, like the population mean or the 

population standard deviation. We simply use sample data to estimate population parameters.

1st parameter – E(X):

ҧ𝑥 =
1

N
σ𝑖=1
𝑁 𝑥𝑖

2nd parameter – Var(X):

S2 = ∑n
i=1 (xi – μ)2 /N



Method of moments
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4.1

Advantages
• Method of moments is simple (compared to other methods like the maximum likelihood method) and can be 

performed by hand.

Disadvantages
• The parameter estimates may be inaccurate. This is more frequent with smaller samples and less common 

with large samples.

• The method may not result in sufficient statistics. In other words, it may not take into account all of the 

relevant information in the sample.



Maximum likelihood estimation
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4.2

Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given distribution, 

using some observed data. 

Using a limited sample of the population, we find particular values of the mean and variance such that the 

observation is the most likely result to have occurred.

For this we define a likelihood function.

The likelihood function of a random variable, X, will give us the probability (or PDF) using a hypothetical 

parameter, θ. 

The maximum likelihood estimate (MLE) is that parameter which gives the highest probability (or PDF), i.e. that 

maximises the likelihood function. 



Maximum likelihood estimation
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4.2

To determine the MLE, the likelihood function needs to be maximised. Often it is practical to consider the 

log-likelihood function 

l θ = lnL θ = ෍

i=1

n

lnP Xi = xi θ for discrete random variable X

l θ = lnL θ = ෍

i=1

n

lnf xi θ for continuous random variable X

If l(θ) can be differentiated with respect to θ, the MLE, expressed as ෠θ, satisfies the expression: 
d

dθ
l ෠θ = 0

STEPS to find MLE :

1. Find L such that L= ςi=1
n f(xi)

2. lnL

3.
dlnL

dxi
= 0 , ෝxi= ________  (MLE)

4.
d2lnL

dxi
2 < 0 , maximum



Maximum likelihood estimation
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4.2

Advantages

Simple to apply and The method is statistically well understood.

Lower variance than other methods (i.e. estimation method least affected by sampling error) and unbiased as the

sample size increases.

Able to analyze statistical models with different characters on the same basis. Maximum likelihood provides a

consistent approach to parameter estimation problems. This means that maximum likelihood estimates can be

developed for a large variety of estimation situations.

Disadvantages

Computationally intensive and so extremely slow (though this is becoming much less of an issue)

Frequently requires strong assumptions about the structure of the data

The estimates that are obtained using this method are often biased. That is, they contain a systematic error of

estimation. This is true for small samples. The optimality properties may not apply for small samples.

MLE is inapplicable for the analysis of non-regular populations (Non-regular distributions are models where a

parameter value is constrained by a single observed value).



Question
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CT6 September 2008 Q11

Losses on a portfolio of insurance policies in 2006 are assumed to have an exponential distribution with 

parameter λ. In 2007 loss amounts have increased by a factor k (so that a loss incurred in 2007 is k times an 

equivalent loss incurred in 2006).

(i) Show that the distribution of loss amounts in 2007 is also exponential and determine the parameter of the 

distribution. [3]

Over the calendar years 2006 and 2007 the insurer had in place an individual excess of- loss reinsurance 

arrangement with a retention of M. Claims paid by the insurer were:

2006: 4 amounts of M and 10 claims under M for a total of 13,500.

2007: 6 amounts of M and 12 claims under M for a total of 17,000.

(ii) Show that the maximum likelihood estimate of λ is:



Question
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(iii) The insurer is negotiating a new reinsurance arrangement for 2008. The retention was set at 1600 when 

the current arrangement was put in place in 2006. Loss inflation between 2006 and 2007 was 10% (i.e. k = 

1.1) and further loss inflation of 5% is expected between 2007 and 2008.

(a) Use this information to calculate ෠λ .

(b) The insurer wishes to set the retention M′ for 2008 such that the expected (net of re-insurance) payment 

per claim for 2008 is the same as the expected payment per claim for 2006. Calculate the value of M′ , using 

your estimate of λ from (iii)(a).



Method of Percentile
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4.3

Method of Percentile indicate the values below which a certain percentage of the data in a data set is found.

The method involves equating selected sample percentiles to the distribution function; for example, equate the 

sample quartiles, the 25th and 75th sample percentiles, to the population quartiles. This corresponds to the way 

in which sample moments are equated to population moments in the method of moments. This method will be 

referred to as the method of percentiles.

In the method of moments, the first two moments are used if there are two unknown parameters, and this 

seems intuitively reasonable (although the theoretical basis for this is not so clear). In a similar fashion, when 

using the method of percentiles, the median would be used if there were one parameter to estimate. 

With two parameters, the best procedure is less clear, but the lower and upper quartiles seem a sensible choice.

Advantage

The main advantage of using percentiles is that unusually high values (like whiskers in boxplots) are not 

included into the averaging calculations. This means that statistics include more relevant data. 

In the example of the 95th-percentile, 5% of the highest measured values are discarded for the statistical report.



Goodness-of-fit test

One way of testing whether a given loss distribution provides a good model for the observed claim 
amounts is to apply a chi-squared goodness-of-fit test.

Recall that the formula for the test statistic is σ
𝑂−𝐸 2

𝐸
, 𝑤ℎ𝑒𝑟𝑒

• O is the observed number in a particular category

• E is the corresponding expected number predicted by the assumed probabilities the sum is over 
all possible categories.

A high value for the total indicates that the overall discrepancy is quite large and would lead us to 
reject the model.
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