### Lecture



#### Mrs. Indrani Sen

Class: SY BSc

Subject: STATISTICAL MODELLING IN R

Subject Code: SMR

Chapter: Unit 4 Chp 1

Chapter Name: Decision tree



### Classification

Classification maps data into predefined groups or classes.

It is referred to as supervised learning.

E.g Good or Bad customer for loan approval

Pattern recognition can be used e.g face recognition

Identifying a pattern on the face which recognizes a criminal



## Classification and regression trees

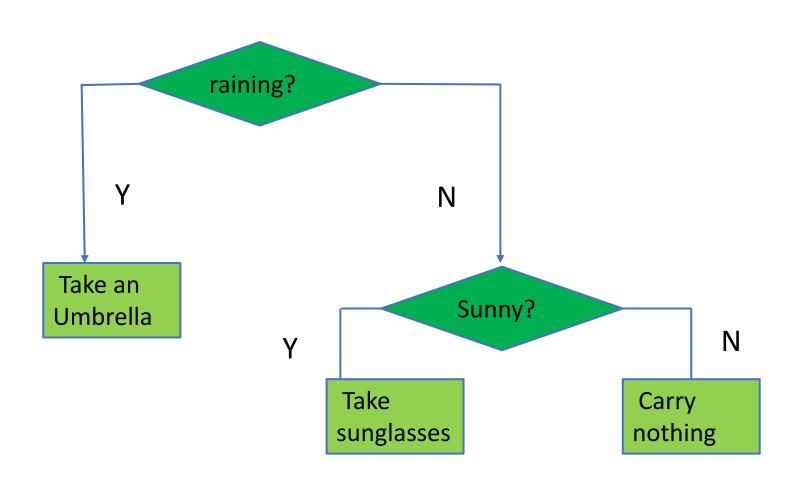
The classification tree splits the response variable into mainly two classes Yes or No

also can be numerically categorized as 1 or 0.

This is the reason why classification tree is applied when there is a need for categorical variable for categorical outcome.

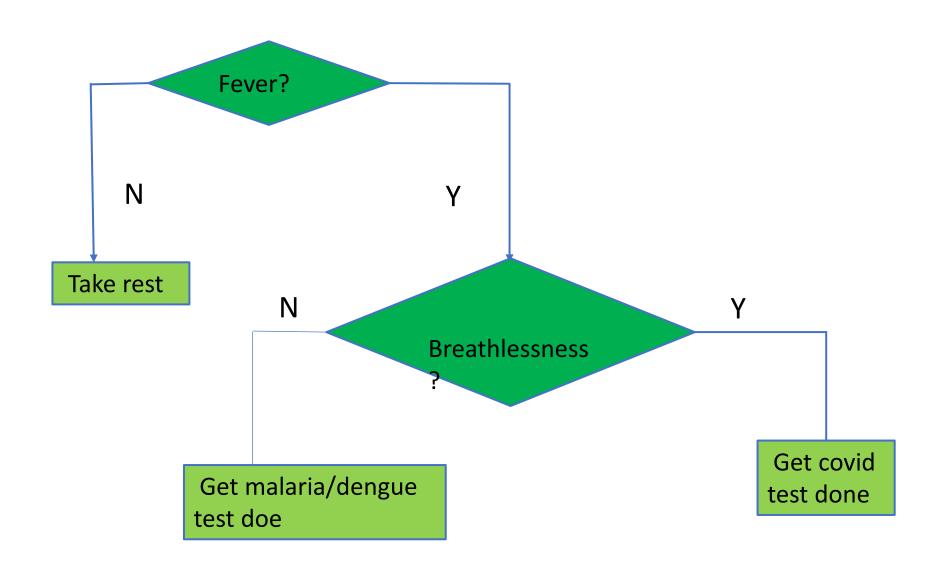


# Decision tree to carry specific things while going out





### MEDICAL DIAGNOSIS





## Decision tree algorithm

The core algorithm for building decision trees called ID3 by J. R. Quinlan which employs a topdown, greedy search through the space of possible branches with no backtracking.

ID3 uses Entropy and Information Gain to construct a decision tree.



## **Important Terminology related to Decision Trees**

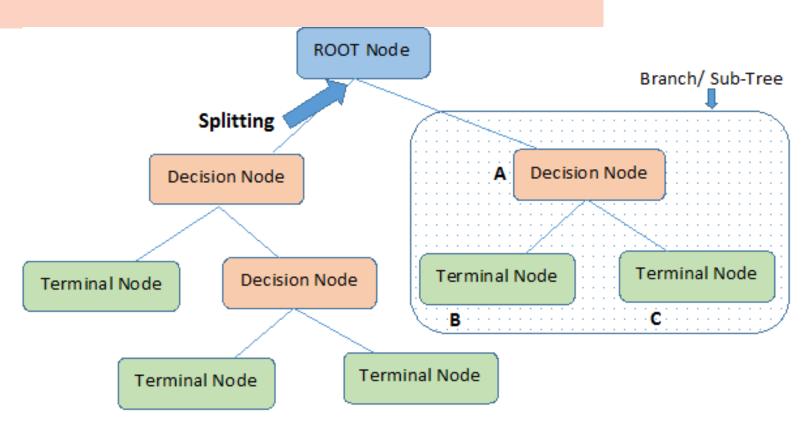
Let's look at the basic terminology used with Decision trees:

Root Node: It represents entire population or sample and this further gets divided into two or more homogeneous sets.

Splitting: It is a process of dividing a node into two or more sub-nodes.

**Decision Node:** When a sub-node splits into further sub-nodes, then it is called decision node.

Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.



Note:- A is parent node of B and C.



## WEATHER DATASET

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | hot         | high     | FALSE | yes  |
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | mild        | normal   | TRUE  | yes  |

play

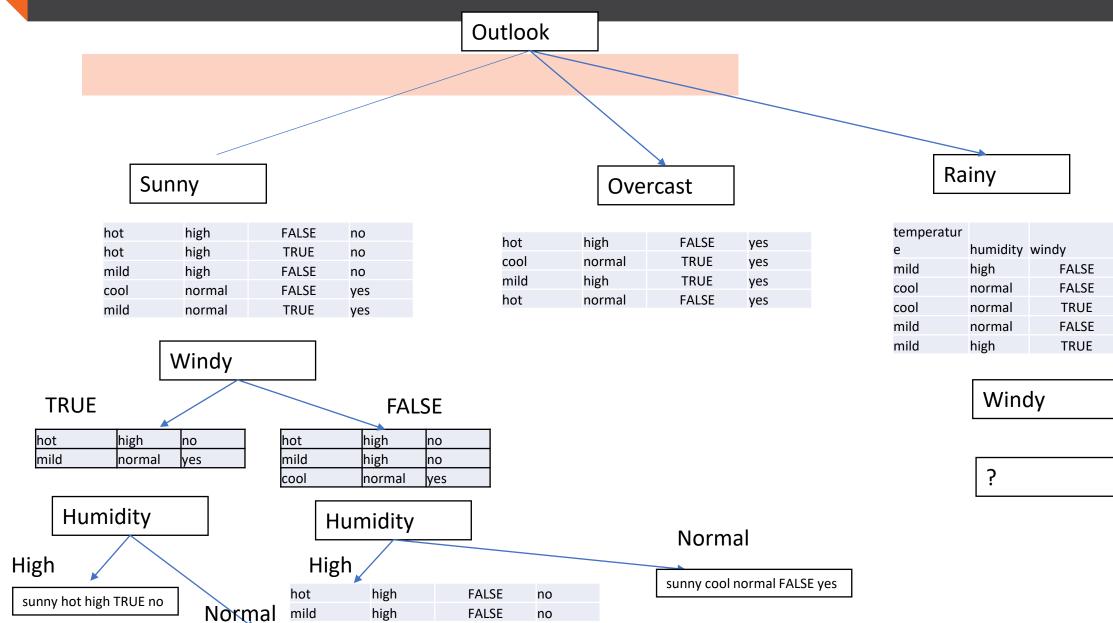
yes

yes

no

yes

no



no

sunny mild normal TRUE yes



### Actual attribute selection

Binary subsets

Outlook (

[sunny,overcast],rainy)(sunny,[overcast,rainy])([sunny,rainy],overcast)

Temperature([cool,hot],mild)([cool,mild],hot)([mild,hot],cool)



#### Outlook

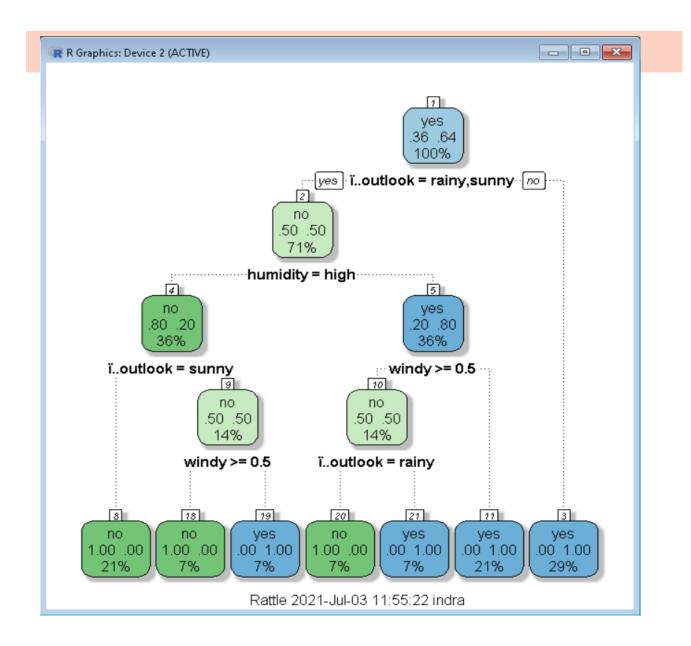
#### Sunny, rainy

| outlook | temperature | humidity | windy | play |
|---------|-------------|----------|-------|------|
| rainy   | mild        | high     | FALSE | yes  |
| rainy   | cool        | normal   | FALSE | yes  |
| rainy   | cool        | normal   | TRUE  | no   |
| rainy   | mild        | normal   | FALSE | yes  |
| rainy   | mild        | high     | TRUE  | no   |
| sunny   | hot         | high     | FALSE | no   |
| sunny   | hot         | high     | TRUE  | no   |
| sunny   | mild        | high     | FALSE | no   |
| sunny   | cool        | normal   | FALSE | yes  |
| sunny   | mild        | normal   | TRUE  | yes  |

#### Overcast

| hot  | high   | FALSE | yes |
|------|--------|-------|-----|
| cool | normal | TRUE  | yes |
| mild | high   | TRUE  | yes |
| hot  | normal | FALSE | yes |





## Entropy

A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous).

ID3 algorithm uses entropy to calculate the homogeneity of a sample.

If the sample is completely homogeneous the entropy is zero and if the sample is an equally divided it has entropy of one.

Entropy=-p log<sub>2</sub>p-qlog<sub>2</sub>q

Information gain=Entropy(parent)-weighted sum of entropy(children)



# Attribute selection using entropy

| Attribute   | Entropy     | Information gain |
|-------------|-------------|------------------|
| Outlook     | 0.693536139 | 0.2467           |
| Temperature | 0.911063393 | 0.0292           |
| Wind        | 0.892158928 | 0.0481           |

#### Gini Gain

Similar to entropy, which had the concept of information gain,

gini gain is calculated when building a decision tree to help determine which attribute gives us the most information about which class a new data point belongs to.

This is done in a similar way to how information gain was calculated for entropy, except instead of taking a weighted sum of the entropies of each branch of a decision, we take a weighted sum of the gini impurity.

$$Gini=1-p^2-q^2$$

Gini gain=Gini(parent)-weighted sum of gini(children)



# Gini index

| Attribute   | Gini        | Gini gain |
|-------------|-------------|-----------|
| Outlook     | 0.342857143 | 0.1163    |
| Temperature | 0.44047619  | 0.0187    |
| Wind        | 0.428571429 | 0.0306    |
| Humidity    | 0.367346939 | 0.0918    |



# Reading the csv file

```
> x=read.csv("d:/weather3.csv")
```

```
> X
```

outlook temperature humidity windy play

```
1 overcast hot high FALSE yes
```

- 2 overcast cool normal TRUE yes
- 3 overcast mild high TRUE yes
- 4 overcast hot normal FALSE yes



# Partitioning the sample and training the model

- > s = sample(14,10)
- > weather\_tr=x[s,]
- > weather\_test=x[-s,]



- > weather\_tr
  outlook temperature humidity windy play
- 8 rainy mild normal FALSE yes
- 7 rainy cool normal TRUE no
- 1 overcast hot high FALSE yes
- 3 overcast mild high TRUE yes
- 5 rainy mild high FALSE yes
- 11 sunny hot high TRUE no
- 14 sunny mild normal TRUE yes
- 9 rainy mild high TRUE no
- 13 sunny cool normal FALSE yes
- 6 rainy cool normal FALSE yes



## Partitioning the tree has error

- > dtree=rpart(play~.,weather\_tr,method="class",)
- > fancyRpartPlot(dtree)

Error in apply(model\$frame\$yval2[, yval2per], 1, function(x) x[1 + x[1]]) :

dim(X) must have a positive length

#### SPLITTING THE TREE

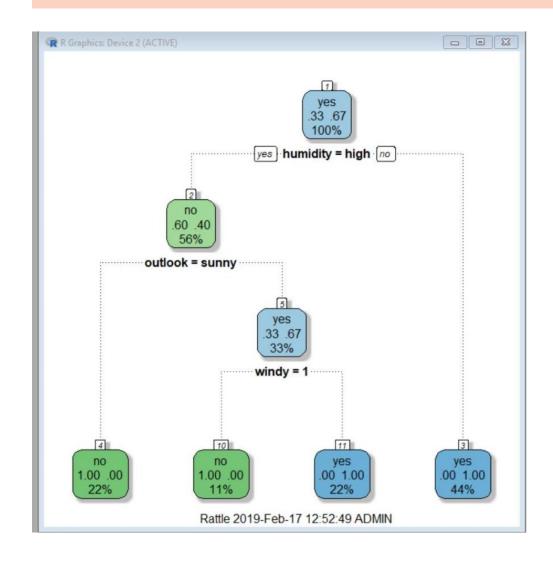
- > dtree=rpart(play ~.,weather\_tr, method="class",
- + control = rpart.control(minsplit = 1, minbucket = 1, maxdepth=20))
- > fancyRpartPlot(dtree)

p=predict(dtree,weather\_test)

Table(weather\_test[,5],dtree)



## **DECISION TREE**



## **Decision Tree - Regression**

Decision tree builds regression or classification models in the form of a tree structure.

It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed.

The final result is a tree with **decision nodes** and **leaf nodes**. A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy), each representing values for the attribute tested.

Leaf node (e.g., Hours Played) represents a decision on the numerical target. The topmost decision node in a tree which corresponds to the best predictor called **root node**.

Decision trees can handle both categorical and numerical data.



# Weather dataset

| Outlook  | temp | Humidity | Windy | Hours_played |
|----------|------|----------|-------|--------------|
| Rainy    | Hot  | High     | FALSE | 26           |
| Rainy    | Hot  | High     | TRUE  | 30           |
| Overcast | Hot  | High     | FALSE | 48           |
| Sunny    | Mild | High     | FALSE | 46           |
| Sunny    | Cool | Normal   | FALSE | 62           |
| Overcast | Cool | Normal   | TRUE  | 43           |
| Rainy    | Mild | High     | FALSE | 36           |
| Rainy    | Cool | Normal   | FALSE | 38           |
| Sunny    | Mild | Normal   | FALSE | 48           |
| Rainy    | Mild | Normal   | TRUE  | 48           |
| Overcast | Mild | High     | TRUE  | 62           |
| Overcast | Hot  | Normal   | FALSE | 44           |
| Sunny    | Mild | High     | TRUE  | 30           |

#### **Standard Deviation Reduction**

A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous).

We use standard deviation to calculate the homogeneity of a numerical sample. If the numerical sample is completely homogeneous its standard deviation is zero.

The attribute with the highest standard deviation reduction is chosen for partitioning

| Attribute:play    |       |       |             |      |              |       |       |
|-------------------|-------|-------|-------------|------|--------------|-------|-------|
| play              | stdev |       |             |      |              |       |       |
| 14                | 1     | 9.63  |             |      |              |       |       |
|                   |       |       |             |      |              |       |       |
|                   |       |       |             |      | Attribute SD | SE    | )R    |
| Attribute:outlook | count | stdev | Р           | •    |              | 8.60  | 1.03  |
| overcast          |       | 4     | 4.031128874 | 0.29 |              |       |       |
| rainy             |       | 5     | 8.700574694 | 0.36 |              |       |       |
| sunny             |       | 5     | 12.15       | 0.36 |              |       |       |
|                   |       |       |             |      | Attribute SD | SE    | )R    |
| Attribute:temper  |       |       |             |      |              |       |       |
| ature             | count | stdev | Р           |      |              | 10.01 | -0.38 |
| cool              |       | 4     | 12.13       | 0.29 |              |       |       |
| hot               |       | 4     | 10.34005158 | 0.29 |              |       |       |
| mild              |       | 6     | 8.38        | 0.43 |              |       |       |
|                   |       |       |             |      |              |       |       |
|                   |       |       |             |      | Attribute SD | SE    | )R    |
| Attribute:wind    | count | stdev | Р           |      |              | 9.78  | -0.15 |
| FALSE             |       | 8     | 8.416607732 | 0.57 |              |       |       |
| TRUE              |       | 6     | 11.60459679 | 0.43 |              |       |       |
|                   |       |       |             |      |              |       |       |
|                   |       |       |             |      |              |       |       |
|                   |       |       |             |      | Attribute SD |       |       |
| Attribute:        |       |       |             |      |              |       |       |
| humidity          | count | stdev | Р           |      |              | 9.77  | -0.14 |
| High              |       | 7     | 10.11364001 | 0.5  |              |       |       |
| Normal            |       | 7     | 9.433981132 | 0.5  |              |       |       |



### TRAINING AND TESTING DATASET

> weather\_tr

Outlook temp Humidity Windy Hours\_played

| 5    | Sunny Cool Normal FALSE   | 52 |
|------|---------------------------|----|
| 9    | Rainy Cool Normal FALSE   | 38 |
| 3 0  | Overcast Hot High FALSE   | 46 |
| 13 ( | Overcast Hot Normal FALSE | 44 |
| 14   | Sunny Mild High TRUE      | 30 |
| 12   | Overcast Mild High TRUE   | 52 |
| 1    | Rainy Hot High FALSE      | 25 |
| 8    | Rainy Mild High FALSE     | 35 |
| 10   | Sunny Mild Normal FALSE   | 46 |

> weather\_test

Outlook temp Humidity Windy Hours\_played

Rainy Hot High TRUE 30

Sunny Mild High FALSE 45

Sunny Cool Normal TRUE 23

Overcast Cool Normal TRUE 43

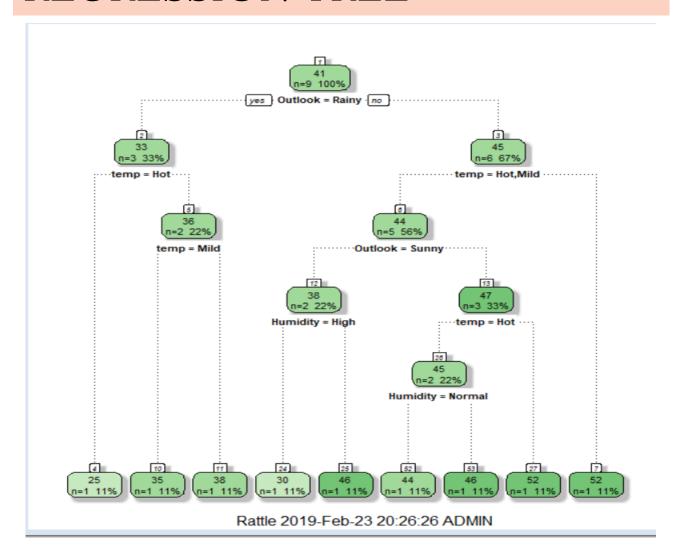
Rainy Mild Normal TRUE 48

### SPLITTING THE TREE

- > dtree=rpart(Hours\_played ~.,weather\_tr, method="anova",
- + control = rpart.control(minsplit = 1, minbucket = 1, maxdepth=20))
- > fancyRpartPlot(dtree)



### **REGRESSION TREE**



### **PREDICTION**

- > pred=predict(dtree,weather\_test)
- > pred

2 4 6 7 11

25 30 52 52 35

- > actual\_predict=data.frame(cbind(actuals=weather\_test\$Hours\_ played, predicteds=pred))
- > actual\_predict

actuals predicteds

- 2 30 25
- 4 45 30
- 6 23 52
- 7 43 52
- 11 48 35