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R-square



Interpretation of R-square



Using p Value To Check For Statistical Significance



What is the Null and Alternate Hypothesis?

1. Whenever there is a p-value, there is always a Null and Alternate 

Hypothesis associated.

2. So what is the null hypothesis in this case?

3. In Linear Regression, the Null Hypothesis (H0) is that the beta 

coefficients associated with the variables is equal to zero.

4. The alternate hypothesis (H1) is that the coefficients are not equal to 

zero. (i.e. there exists a relationship between the independent variable in 

question and the dependent variable).



What is t-value?

1. We can interpret the t-value something like this. A larger t-value indicates 

that it is less likely that the coefficient is not equal to zero purely by 

chance. 

2. So, higher the t-value, the better.

3. Pr(>|t|) or p-value is the probability that you get a t-value as high or 

higher than the observed value when the Null Hypothesis (the ? 

coefficient is equal to zero or that there is no relationship) is true.

4. So if the Pr(>|t|) is low, the coefficients are significant (significantly 

different from zero).

5. If the Pr(>|t|) is high, the coefficients are not significant.



Standard Error and F-Statistic



Calculation of f-statistic in R



What is the SSR?



What is the SST?



What is the SSE?



What is AIC and BIC?



What is AIC and BIC?



Multiple Linear Regression

• Multiple linear regression is an extension of simple linear  regression.

It is used when w e want to predict the value of a  variable based on

the values of two or more other variables.

• The variable w e want to predict is called as dependent variable  (or 

sometimes response variable).

• The variables used to predict the value of dependent variable  are 

called as independent variables (or sometimes, the  predictor, 

explanatory or regressorvariables).



Statistical Model in Multiple Linear Regression



Train-Test Split

➢Before we build any predictive model, we should split the dataset into a 

training

and a test data.

➢The training dataset, as the name suggests, is used to learn the patterns 

from  the data and build a model which gives us near-expected 

predictions.

➢After we have built a model using the training data, we use the test 

data to  estimate the performance of our model.

➢Using test data gives us a completely unbiased estimate of our model 

accuracy  and helps us understand how our model would perform in a real-

world scenario.

➢The splitting of the dataset into training and test should be random. 

Generally a  70:30 split is taken, i.e. 70% data as training and 30% data for 

testing.





Global Testing

F Test

A F-test is conducted to ascertain the whether the relationship between the 

dependent variable and the independent variables is statistically significant.

➢The assumptions of the F-test are :

1.Error terms are normally distributed.

2.Error terms have mean 0 and common variance 𝜎2

3.Error terms are independent across observations

➢The Hypothesis of the F-test is

𝐻0: 𝛽𝑖 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑣s 𝐻1: 𝐴𝑡𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑖 ≠ 0
➢We reject 𝐻0 if the p-value of this test is less than 5% and conclude that our  

model is a good fit.

➢This test is called the Global Test of model adequacy



Individual Testing

t-test

➢The t-test checks whether a specific independent variable has a statistically 

significant

impact on the dependent variable. The Hypothesis for this test is

𝐻0: 𝛽𝑖 = 0 𝑣𝑠 𝐻1: 𝛽𝑖 ≠ 0

➢ This t-test allow us to conclude whether each variable is statistically 

significant  individually and therefore helps us in making the decision 

regarding whether to  include that variable in our model.

➢We reject 𝐻0 if p-value is less than 0.05 i.e., the variable has a 

significant impact on

the dependent variable.

➢We conduct this test for all the independent variables in our model 

separately.



Model Building
After identifying the variables influencing sales, we proceed with model

building. We require to split the data for the purpose.

➢‘caTools’ has functions for random splitting of data.

➢Using sample.split() we split the data into training and testing dataset.

➢sample.split() gives logical values to the dataset and splits it into specified

ratio for training and testing data.

➢It also requires us to fixate on a field with respect to which it splits. Any  field can be used.



Model selection



Primer



Model selection



Model selection



Model selection



Backward elimination



Backward elimination



What is a Parsimonious Model?

Parsimonious models are simple models with great explanatory predictive power. 

They explain data with a minimum number of parameters, or predictor variables. 

The idea behind parsimonious models stems from “the law of briefness” 

(sometimes called lex parsimoniae in Latin). 

The law states that you should use no more “things” than necessary; 

In the case of parsimonious models, those “things” are parameters. 

Parsimonious models have optimal parsimony, or just the right amount of 

predictors needed to explain the model well.

https://www.statisticshowto.datasciencecentral.com/independent-variable-definition/#Predictor


Parsimonius model

There is generally a tradeoff between goodness of fit and parsimony: 

low parsimony models (i.e. models with many parameters) tend to 

have a better fit than high parsimony models. 

This is not usually a good thing; 

adding more parameters usually results in a good model fit for the 

data at hand, 

but that same model will likely be useless for predicting other data 

sets. 

https://www.statisticshowto.datasciencecentral.com/goodness-of-fit-test/


Linear relationship

• First, linear regression needs the relationship between the independent and dependent variables 

to be linear.  

• It is also important to check for outliers since linear regression is sensitive to outlier effects. 

• The linearity assumption can best be tested with scatter plots, 
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par(mfrow=c(2,2))

plot(x=df_market$youtube,y=df_market$sales,pch=21,cex=1,bg="red")

plot(x=df_market$facebook,y=df_market$sales,pch=21,cex=1,bg="blue")

plot(x=df_market$newspaper,y=df_market$sales,pch=21,cex=1,bg="green"

)



Assumptions of Linear Regression

Linear regression is an analysis that assesses whether one or more 

predictor variables explain the dependent (criterion) variable. The 

regression has five key assumptions:

Linear relationship

Multivariate normality

No or little multicollinearity

No auto-correlation

Homoscedasticity
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Multivariate normality

Secondly, the linear regression analysis requires all variables to be multivariate normal.  

This assumption can best be checked with a histogram or a Q-Q-Plot. 

Normality can be checked with a goodness of fit test, e.g., the Kolmogorov-Smirnov test.  

When the data is not normally distributed a non-linear transformation (e.g., log-

transformation) might fix this issue.
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dev.off()

par(mfrow=c(2,2))

plot(density(x=df_market$youtube),main="youtube")

plot(density(x=df_market$facebook),main="facebook")

plot(density(x=df_market$newspaper),main="newspaper")

plot(density(x=df_market$sales),main="sales")



Log transformation using R

Sometimes, we have to deal with data that don´t have a normal shape but 

a skewed one. 

A negative skewness reveals that the mean of the values is less than the 

median, 

which means that the data distribution is left-skewed. 

A positive skewness suggests that the mean of the data values is larger 

than the median, 

and the data distribution is right-skewed.



log-transformation in the values might help us to improve the model. For that, we will use the log1p function, 

which, by default, computes the natural logarithm of a given number or set of numbers.

> par(mfrow=c(1,2))

> plot(density(x=df_market$newspaper),main="newspaper")

> 

> plot(density(x=log_news),main="newspaper")

> skewness(log_news)

[1] -0.8309352



Shapiro-Wilk test
➢The third assumption for a linear regression model is that the residuals/errors follow a  normal distribution.

➢So to check whether residuals follow a normal distribution we use the Shapiro-Wilk

test.

➢The Hypothesis for Shapiro-Wilk test are:

𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑣𝑠 𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

➢If the p-value of this test is less than 5%, we reject 𝐻0 and conclude that residuals do

not follow a normal distribution.

➢Since we want the residuals to follow normal distribution , we want the p-value to be  greater than 0.05

➢This test can be conducted in R by using the shapiro.test() function from the stats

package.

➢This test can only be conducted for a sample size of less than 5000.



Shapiro-Wilk test
Output:

➢Since p-value is less than 0.05, we reject 𝐻0 and infer that the residuals do not follow

a normal distribution.

➢In real life data rarely follow a normal distribution and hence to fit a model with  normally distributed residuals 

with 5% level of significance.

➢For this reason, we use a Q-Q plot of the residuals and ascertain the seriousness of

the issue regarding the normality of residuals.

> library(stats)
> shapiro.test(model2$residuals)

Shapiro-Wilk normality test

data:  model2$residuals
W = 0.91673, p-value = 1.313e-07
dev.off()
plot(density(x=model2$residuals),main="residuals model2")



➢The first plot has fitted values on the X-axis

and residuals on the Y-axis.

➢This plot is used to identify any non-linear  relationship 

between the independent  variables and predicted variable.

➢The red dotted line should be horizontal line  without any 

distinct pattern.

➢This is a good outcome since it indicates that

we don’t have any non-linear relationships.

plot(model2)

Diagonistic Plots
(residuals plot)



Residual plots



Model Evaluation
➢The Normal Q-Q(quantile-quantile) plot  is 
designed specially to check for normality  of 
residuals.
➢If residuals are normally distributed the  
quantiles should form a straight line , i.e.  
they should be near to the dotted line in the  
plot.
➢In this case, the lower tail( lower left  corner) 
is quite far from the dotted line and  the 
upper tail ( top right corner) is also a bit  far 
from the line.
➢Here, residuals don’t seem to follow a  
Normal Distribution in the tails. The model is  
indicating three outliers[131,5 and 132]
Lets look at the next plot while keeping in 
mind about the outliers.
qqnorm(residuals(model2), pch = 1, frame 
= FALSE)

qqline(residuals(model2), col = 
"steelblue", lwd = 2)



Multicollinearity

• Linear regression assumes that there is little or no multicollinearity in the data.

• Multicollinearity occurs when the independent variables are too highly correlated with each other.

• Multicollinearity may be tested with three central criteria:

• 1) Correlation matrix – when computing the matrix of Pearson’s Bivariate Correlation among all

independent variables the correlation coefficients need to be smaller than 1.

• 3) Variance Inflation Factor (VIF) – the variance inflation factor of the linear regression is defined

as VIF = 1/T. With VIF > 5 there is an indication that multicollinearity may be present; with VIF >

10 there is certainly multicollinearity among the variables.

• If multicollinearity is found in the data, centering the data (that is deducting the mean of the

variable from each score) might help to solve the problem. However, the simplest way to address

the problem is to remove independent variables with high VIF values.



Multicollinearity

> library(car)

Loading required package: carData

Warning messages:

1: package ‘car’ was built under R version 4.0.5 

2: package ‘carData’ was built under R version 4.0.3 

> vif(model2)

youtube facebook

1.005157 1.005157 
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Autocorrelation

• While a scatterplot allows you to check for autocorrelations, you can test the linear 

regression model for autocorrelation with the Durbin-Watson test.  

• Durbin-Watson’s d tests the null hypothesis that the residuals are not linearly auto-

correlated.  

• While d can assume values between 0 and 4, values around 2 indicate no 

autocorrelation.  

• As a rule of thumb values of 1.5 < d < 2.5 show that there is no auto-correlation in the 

data. However, the Durbin-Watson test only analyses linear autocorrelation and only 

between direct neighbors, which are first order effects.
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What is The Durbin Watson Test?

The Durbin Watson Test is a measure of autocorrelation (also called serial 

correlation) in residuals from regression analysis. 

Autocorrelation is the similarity of a time series over successive time 

intervals.

It can lead to underestimates of the standard error and can cause you to 

think predictors are significant when they are not.

The Durbin Watson test looks for a specific type of serial correlation, 

the AR(1) process.



Durbin Watson test

The Hypotheses for the Durbin Watson test are:

H0 = no first order autocorrelation.

H1 = first order correlation exists.

(For a first order correlation, the lag is one time 

unit).



Durbin Watson test

Where Et are residuals from an ordinary least squares regression.

The Durbin Watson test reports a test statistic, with a value from 0 

to 4, where:

2 is no autocorrelation.

0 to <2 is positive autocorrelation (common in time series data).

>2 to 4 is negative autocorrelation (less common in time series 

data).

A rule of thumb is that test statistic values in the range of 1.5 to 

2.5 are relatively normal. 

Values outside of this range could be cause for concern. 



Autocollinearity test

> durbinWatsonTest(model2)

lag Autocorrelation D-W Statistic p-value

1     -0.05325835      2.104747   0.554

Alternative hypothesis: rho != 0

values in the range of 1.5 to 2.5 are relatively normal.



homoscedasticity

Homoscedasticity described as a condition where the standard deviations are equal for all 

points.

Simply put, homoscedasticity means “having the same scatter.” For it to exist in a set of 

data, the points must be about the same distance from the line, as shown in the picture 

above. The opposite is heteroscedasticity (“different scatter”), where points are at widely 

varying distances from the regression line.
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Breusch Pagan test
➢Heteroskedasticity means changing/non-constant variance.

➢In linear regression, error terms should be homoskedastic i.e. they should have a

common constant variance.

➢We conduct a Breusch-Pagan test to check for heteroskedasticity among the error  terms.

➢The Hypothesis of Breusch-Pagan test is:

𝐻0: 𝐷𝑎𝑡𝑎 𝑖𝑠 ℎ𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐, 𝑖𝑒 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙

𝐻1: 𝐷𝑎𝑡𝑎 𝑖𝑠 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐

➢We reject 𝐻0 only if p-value is less than 5%.

➢Here, we want the errors to be homoscedastic and so we want to have a p-value to be

greater than 5%

➢In R, the Breusch-Pagan test is conducted using the bptest() function available in the

lmtest package.



Breusch Pagan test
Input:

Output:

Inference:

Since the p-value>0.05 , we don’t have enough evidence to reject 

𝐻0

We conclude that the error terms are homoscedastic in nature.



• The term inverse can be used with different meanings. The meanings 

are: reciprocal. In this case the inverse of log(x) is 1/log(x) inverse 

function. 

• In this case it refers to solving the equation log(y) = x for y 

• in which case the inverse transformation is exp(x) assuming the log is 

base e. 

• (In general, the solution is b^x if the log is of base b. 

• For example, if log10(y) = x then the inverse transformation is 10^x.)
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Shapiro-Wilk test

➢The third assumption for a linear regression model is that the residuals/errors follow a  normal distribution.

➢So to check whether residuals follow a normal distribution we use the Shapiro-Wilk

test.

➢The Hypothesis for Shapiro-Wilk test are:

𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑣𝑠 𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

➢If the p-value of this test is less than 5%, we reject 𝐻0 and conclude that residuals do

not follow a normal distribution.

➢Since we want the residuals to follow normal distribution , we want the p-value to be  greater than 0.05

➢This test can be conducted in R by using the shapiro.test() function from the stats

package.

➢This test can only be conducted for a sample size of less than 5000.



Shapiro-Wilk test
Input:

Output:

➢ Since p-value is less than 0.05, we reject 𝐻0 and infer that the residuals do not follow

a normal distribution.

➢ In real life data rarely follow a normal distribution and hence to fit a model with  normally distributed residuals with 

5% level of significance.

➢ For this reason, we use a Q-Q plot of the residuals and ascertain the seriousness of

the issue regarding the normality of residuals.



Diagonistic Plots

➢The first plot has fitted values on the X-axis

and residuals on the Y-axis.

➢This plot is used to identify any non-linear  relationship between the independent  variables and predicted 

variable.

➢The red dotted line should be horizontal line  without any distinct pattern.

➢This is a good outcome since it indicates that

we don’t have any non-linear relationships.



Model Evaluation

➢The Normal Q-Q(quantile-quantile) plot  is designed 

specially to check for normality  of residuals.

➢If residuals are normally distributed the  quantiles should 

form a straight line , i.e.  they should be near to the dotted 

line in the  plot.

➢In this case, the lower tail( lower left  corner) is quite far 

from the dotted line and  the upper tail ( top right corner) 

is also a bit  far from the line.

➢Here, residuals don’t seem to follow a  Normal Distribution 

in the tails. The model is  indicating three outliers[131,5 

and 132]

Lets look at the next plot while keeping in mind about 

the outliers.



Model Evaluation
➢The third diagnostic plot has the fitted values on the X-axis and standardized residuals  on the Y-axis. This plot is called a 

Scale-Location or Spread-Location plot.

➢ This plot helps in checking the  homoskedasticity of the residuals.

➢ A good outcome from this plot is that the  red line is horizontal and equally and  randomly has points below and above the  

line.

➢ The assumption of homoskedasticity fails if  the red line is rising.

➢ Here the red line is horizontal and has almost

equal points on both sides.

➢ Residuals possess homoskedasticity.



Model Evaluation
➢The fourth plot is of standardized residuals versus leverage.

➢Leverage implies the impact of data  points on the model.

➢Higher the leverage, higher the  impact.

➢This plot is used to check if the  outliers mentioned in the second plot  significantly influence the model.

➢ Here, the pattern of the red line is not  relevant.

➢ The relevant part is the Cook’s Distance. If the outliers lie beyond this distance we  conclude that they significantly 

impact our model and should be removed to improve  the model.

➢ Here no outliers lie beyond that distance[marked at lower right corner] and so we

conclude that outliers don’t significantly impact our regression model.



Thank you



Icons to use
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1.2

To highlight something important

To ask a question

When giving a reference to extra/additional reading

Question to be solved (in class)

Important definition

To quote someone


