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R-square

INTERPRETATION OF R?

* |FR2 =1, ALL OF THE DATA POINTS FALL PERFECTLY ON THE REGRESSION LINE. THE PREDICTOR
X ACCOUNTS FOR ALL OF THE VARIATION IN Y!

* |F R2 = 0, THE ESTIMATED REGRESSION LINE IS PERFECTLY HORIZONTAL. THE PREDICTOR X
ACCOUNTS FOR NONE OF THE VARIATION IN Y!

* IF R?1S BETWEEN O AND 1, "R? X100 PERCENT OF THE VARIATION IN Y IS 'EXPLAINED BY' THE
VARIATION IN PREDICTOR X."



Interpretation of R-square

* In the context of predictive models (usually linear regression), where y is the true outcome, and
fis the model’s prediction, the definition that | see most often is:

Z?:l(yi — fz)2
Z?:l(?/z' —7)°

* In words, R: is a measure of how much of the variance in y is explained by the model, f.

s iOr

* R?|S ALSO THE SQUARE OF THE CORRELATION (CORRELATION WRITTEN AS A “P” OR “RHQO”)
BETWEEN THE ACTUAL AND PREDICTED OUTCOMES.

R? =1

St



Using p Value To Check For Statistical Significance

The summary statistics above tells us a number of things.
One of them is the model’s p-Value (in last line) and the p-Value of individual predictor variables
The p-Values are very important.

Because, we can consider a linear model to be statistically significant only when hoth these p-Values
are less than the pre-determined statistical significance level of 0.05.

This can visually interpreted by the significance stars at the end of the row against each X variable.

The more the stars beside the variable p-Value, the more significant the variable.



What is the Null and Alternate Hypothesis?
1. Whenever there is a p-value, there is always a Null and Alternate
Hypothesis associated.
2. So what is the null hypothesis in this case?

3. In Linear Regression, the Null Hypothesis (HO) is that the beta
coefficients associated with the variables is equal to zero.

4. The alternate hypothesis (H1) is that the coefficients are not equal to
zero. (i.e. there exists a relationship between the independent variable in
qguestion and the dependent variable).



What is t-value?

1. We can interpret the t-value something like this. A larger t-value indicates
that it is less likely that the coefficient is not equal to zero purely by
chance.

2. So, higher the t-value, the better.

3. Pr(>|t|) or p-value is the probability that you get a t-value as high or
higher than the observed value when the Null Hypothesis (the ?
coefficient is equal to zero or that there is no relationship) is true.

4. So if the Pr(>[t|) is low, the coefficients are significant (significantly
different from zero).

5. If the Pr(>|t]) is high, the coefficients are not significant.



Standard Error and F-Statistic

Both standard errors and F-statistic are measures of goodness of fit.

Std. Error = MSE = @
n—q
B st
statistic = VSE

where, n is the number of observations, q is the number of coefficients and MSR is the mean

square regression, calculated as,

Yi (-9) SST-SSE

MSR = 1 i

The higher the F-Statistic the better it is.

MSE: Mean squared error
MSR: Mean square regression

SSE: Sum of squares error
SST: Sum of squares total

SSR: Sum of square regression




Calculation of f-statistic in R

MSR=sum((fitted(modell)-mean(df trSsales))**2)/3
MSR

MSE=sum((residuals(model1))**2)/(150-4)

MSE

f value=MSR/MSE
f value

> summary(model1)Sfstatistic
value numdf dendf
443.1946 3.0000 146.0000
> MSR=sum((fitted(modell)-mean(df_trSsales))**2)/3
> MSR
[1] 1882.795
> MSE=sum((residuals(model1))**2)/(150-4)
> MSE
[1] 4.248236
>
> f value=MSR/MSE
>f_value
[1] 443.1946
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What is the SSR?

The second term is the sum of squares due to regression, or SSR. It is the sum of the differences between
the predicted value and the mean of the dependent variable. Think of it as a measure that describes how
well our line fits the data.
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What is the SST?

The sum of squares total, denoted SST, is the squared differences hetween
the observed dependent variable and its mean.




What is the SSE?

1. The last term is the sum of squares error, or SSE.

2. The error is the difference between the observed value and the predicted value.
How Are They Related?

Mathematically, SST = SSR + SSE.

Total = explained + unxplained
variability vanabily variabilty

Z(y. -y)? = Z(y, — )+ -+ Z ef

=1




What is AIC and BIC?

1. The Akaikes information criterion — AIC (Akaike, 1974)

2. and the Bayesian information criterion — BIC (Schwarz, 1978)

3. are measures of the goodness of fit of the linear regression model

4. and can also be used for model selection.

5. where, n is the sample size.

6. For model comparison, the model with the lowest AIC and BIC score is preferred.

AIC = n* log(sum of squares error/n) + 2K
Where:

K is the number of model parameters (the number of variables in the model plus the intercept).
The lower the number, the better the fit.

The Bayesian Information Criterion (BIC) is almost the same as the AIC, although it tends to favor models with
fewer parameters.
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Multiple Linear Regression

Multiple linear regression is an extension of simple linear regression.
Itisused when we want to predict the value of a variable based on
the values of two or more other variables.

The variable we want to predict is called as dependent variable (or
sometimes responsevariable).

The variables used to predict the value of dependent variable are
called as independent variables (or sometimes, the predictor,
explanatory or regressorvariables).



Statistical Model in Multiple LinearRegression

Y=b0+ blxl + bzXz + et bpxp + e

Where,

Y

:Dependent Variable

X1, X3,.. X, :Independent Variables
by, by ;...,b, :Parameters of Model

¢

:Random ErrorComponent

Parameters of the model are estimated by Least Square

Method.




Train-Test Split

-Before we build any predictive model, we should split the dataset into a
training

and a test data.
-The training dataset, as the name suggests, is used to learn the patterns
from the data and build a model which gives us near-expected
predictions.

-After we have built a model using the training data, we use the test .

data to estimate the performance of our model.

-Using test data gives us a completely unbiased estimate of our model
accuracy and helps us understand how our model would perform in a real-
world scenario.

-The splitting of the dataset into training and test should be random.
Generally a 70:30 split is taken, i.e. 70% data as training and 30% data for
testing.




Co-efficient of Determination Adjusted R2

R:

1. Rsquared is the proportion of variation in the

response variable explained by the independent

variables in the model.

2= explained variation

Total variation

>Both R2 and R2

>take value between 0 and 1, where 1
. means 100% variation is explained

R2 increases or remains the same when
Independent variables are added to the
model, even when the independent
variables don't improve the fit.

>Higher the value of R2 is our model.

1. Adjusted R squared as the name
suggests iIs the proportion of variation
explained by the model adjusted for the
number of |8d§;-5?295nt variables.

p—1

2. Rudj=1 , for a model with n

observations and p independent variables.
3. dej Increases only when the new variable

Improves the model fit more than
expected by chance alone.

by the model. Due to the increasing nature

of R2, it is not a good criterion to compare
models.



Global Testing

F Test
A F-test is conducted to ascertain the whether the relationship between the
dependent variable and the independent variables is statistically significant.
-The assumptions of the F-test are :
1Error terms are normally distributed.
.Error terms have mean 0 and common variance o2
sError terms are independent across observations
-The Hypothesis of the F-test is
HO: Bi =0 forallivs H1: Atleast one fi #0
-We reject HO if the p-value of this test is less than 5% and conclude that our
model is a good fit.
-This test is called the Global Test of model adequacy



Individual Testing

t-test

-The t-test checks whether a specific independent variable has a statistically
significant

impact on the dependent variable. The Hypothesis for this test is

HO: i =0vsH1:Bi #0

- This t-test allow us to conclude whether each variable is statistically
significant individually and therefore helps us in making the decision
regarding whether to include that variable in our model.
-We reject HO if p-value is less than 0.05 i.e., the variable has a
significant impact on

the dependent variable.
-We conduct this test for all the independent variables in our model
separately.



Model Building

After identifying the variables influencing sales, we proceed with model

building. We require to split the data for the purpose.

»'caTools’ has functions for random splitting of data.

»Using sample.split() we split the data into training and testing dataset.

»sample.split() gives logical values to the dataset and splits it into specified

ratio for training and testing data.

> It also requires us to fixate on a field with respect to which it splits. Any field can be used.

#model building

library(caTools)

set.seed(101)
sample=sample.split(marketing$sales,SplitRatio = 0.7)
train=subset(marketing,sample==TRUE)

test=subset (marketing,sample==FALSE)

model=Im(sales~. ,data=train)

summary(model)




Model selection



Primer

Primer

The model that includes all available explanatory variables is often referred to
as the full model.



Model selection

P-values provide helpful information.

« Regression model relating price of a video game to various features, e.g.
cond_new (1 if new, 0 if used), stock_photo (stock photo used).

Estimate Std. Error t value Pr(>|t|)

(Intercept)  36.2110 1.5140  23.92 0.0000
cond_new 5.1306 1.0511 4.88 0.0000
stock_photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882
wheels 7.2852 0.5547 13.13 0.0000

RZ, = 0.7108 df =136



Model selection

Two model selection strategies

Two common strategies for adding or removing variables in a multiple
regression model are called backward-selection and forward-selection.



Model selection

Two model selection strategies

Two common strategies for adding or removing variables in a multiple
regression model are called backward-selection and forward-selection.

« The backward-elimination strategy starts with the model that includes all
potential predictor variables. Variables are eliminated one-at-a-time from
the model until only variables with statistically significant p-values remain.

« The forward-selection strategy is the reverse of the backward-elimination
technique. Instead of eliminating variables one-at-a-time, we add variables
one-at-a-time until we cannot find any variables that present strong
evidence of their importance in the model.



Backward elimination

« Start with the full model, and first eliminate duration.

Estimate Std. Error t value Pr(>[t|)

(Intercept)  36.2110 1.5140  23.92  0.0000
cond_new 5.1306 1.0511 4.88 0.0000
stack_nhata 10802 1.NRAR 102023085

duration  -0.0268 01904  -0.14  0.8882
- wheels (2804 V0047 1518 U.UULU
R?, = 0.7108 df =136



Backward elimination

« To give the final model, after backward-selection.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.7849 0.7066 52.06 0.0000
cond_new 5.0848 0.9245 6.04 0.0000
wheels 7.2328 0.5419 13.35 0.0000

RZ, =0.7124 df = 138



What is a Parsimonious Model?

Parsimonious models are simple models with great explanatory predictive power.

They explain data with a minimum number of parameters, or predictor variables.

The idea behind parsimonious models stems from “the law of briefness”
(sometimes called lex parsimoniae in Latin).

The law states that you should use no more “things” than necessary;
In the case of parsimonious models, those “things” are parameters.

Parsimonious models have optimal parsimony, or just the right amount of
predictors needed to explain the model well.


https://www.statisticshowto.datasciencecentral.com/independent-variable-definition/#Predictor

Parsimonius model

There is generally a tradeoff between goodness of fit and parsimony:

low parsimony models (i.e. models with many parameters) tend to
have a better fit than high parsimony models.

This is not usually a good thing;

adding more parameters usually results in a good model fit for the
data at hand,

but that same model will likely be useless for predicting other data
sets.


https://www.statisticshowto.datasciencecentral.com/goodness-of-fit-test/

Linear relationship

 First, linear regression needs the relationship betw
to be linear.

df_rmarket§sales

« ltis also important to check for outliers since line:

« The linearity assumption can best be tested with

par(mfrow=c(2,2))

plot(x=df_marketSyoutube,y=df_marketSsales,pch=21,cex=1,bg="red")

df_rmarket§sales

plot(x=df_marketSfacebook,y=df_marketSsales,pch=21,cex=1,bg="blue")

plot(x=df_marketSnewspaper,y=df_marketSsales,pch=21,cex=1,bg="green"

)
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Assumptions of Linear Regression

Linear regression is an analysis that assesses whether one or more
predictor variables explain the dependent (criterion) variable. The
regression has five key assumptions: \

Linear relationship

Multivariate normality

No or little multicollinearity

No auto-correlation

Homoscedasticity

31
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Log transformation using R

Sometimes, we have to deal with data that don’t have a normal shape but
a skewed one.

A negative skewness reveals that the mean of the values is less than the
median,

which means that the data distribution is left-skewed.

A positive skewness suggests that the mean of the data values is larger
than the median,

and the data distribution is right-skewed.



log-transformation in the values might help us to improve
which, by default, computes the natural logarithm of a give

> par(mfrow=c(1,2))

> plot(density(x=df_market$newspaper),main="newz

>
> plot(density(x=log_news),main="newspaper")
> skewness(log_news)

[1] -0.8309352

a
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Shapiro-Wilk test

-The third assumption for a linear regression model is that the residuals/errors follow a normal distribution.
-So to check whether residuals follow a normal distribution we use the Shapiro-Wilk
test.
-The Hypothesis for Shapiro-Wilk test are:
HO: Residuals follow a Normal Distribution
vs H1: Residuals do not follow a Normal Distribution
-If the p-value of this test is less than 5%, we reject HO and conclude that residuals do
not follow a normal distribution.
-Since we want the residuals to follow normal distribution , we want the p-value to be greater than 0.05
-This test can be conducted in R by using the shapiro.test() function from the stats
package.

,This test_can onlv be co cted foras j I ha .




Shapiro-Wilk test

Output:

residuals model2

025

> library(stats)
N———— .
> shapiro.test(model2Sresiduals)

020

015

Shapiro-Wilk normality test

010

0.05

data: model2Sresiduals

W =0.91673, p-value = 1.313e-07 | | .
d eV. Off() - N N= 150-58aﬂdwidth =0 60:4 5
plot(density(x=model2Sresiduals),main="residuals model2") |

-Since p-value is less than 0.05, we reject HO and infer that the residuals do not follow
a normal distribution.
-In real life data rarely follow a normal distribution and hence to fit a model with normally distributed residuals
with 5% level of significance.
-For this reason, we use a Q-Q plot of the residuals and ascertain the seriousness of
the issue regarding the normality of residuals.

0.00




Diagonistic Plots
(residuals plot)

»The first plot has fitted values on the X-axis

and residuals on the Y-axis.

»This plot is used to identify any non-linear relationship
between the independent variables and predicted variable.
»The red dotted line should be horizontal line without any
distinct pattern.

»This is a good outcome since it indicates that

we don’t have any non-linear relationships.

plot(model2)
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Residual plots

Below, the residual plots show three typical patterns. The first plot shows a random pattern, indicating a good fit
for a linear model.

Random pattern

The other plot patterns are non-random (U-shaped and inverted U), suggesting a better fit for a non-linear
model.

Non-random: Inverted U



Model Evaluation

-The Normal Q-Q(quantile-quantile) plot is

designed specially to check for normality of

residuals.

-If residuals are normally distributed the
uantiles should form a straight line, i.e.

they should be near to the dotted line in the

plot.

-In this case, the lower tail( lower left corner)

is quite far from the dotted line and the

upper tail ( top right corner) is also a bit far

from the line.

-Here, residuals don't seem to follow a

Normal Distribution in the tails. The model is

indicating three outliers[131,5 and 132]

Lets look at the next plot while keeping in
mind about the outliers.

gqgnorm(residuals(model2), pch = 1, frame
= FALSE)

qqline(residuals(model2), col =
"steelblue”, lwd = 2)

Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles



Multicollinearity

Linear regression assumes that there is little or no multicollinearity in the data.

Multicollinearity occurs when the independent variables are too highly correlated with each other.
Multicollinearity may be tested with three central criteria:

1) Correlation matrix — when computing the matrix of Pearson’s Bivariate Correlation among all
independent variables the correlation coefficients need to be smaller than 1.

3) Variance Inflation Factor (VIF) — the variance inflation factor of the linear regression is defined
as VIF = 1/T. With VIF > 5 there is an indication that multicollinearity may be present; with VIF >
10 there is certainly multicollinearity among the variables.

If multicollinearity is found in the data, centering the data (that is deducting the mean of the
variable from each score) might help to solve the problem. However, the simplest way to address
the problem is to remove independent variables with high VIF values.



Multicollinearity

> library(car)

Loading required package: carData

Warning messages:

1: package ‘car’ was built under R version 4.0.5

2: package ‘carData’ was built under R version 4.0.3
> vif(model2)

youtube facebook

1.005157 1.005157
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Autocorrelation

While a scatterplot allows you to check for autocorrelations, you can test the linear

regression model for autocorrelation with the Burbin-Watsomntest. .
Durbin-Watson's d tests the null hypothesis that the residuals are not line to-
correlated. 2‘?_3; _

a

While d can assume values between 0 and 4, values around 2 indicate no
autocorrelation.

\

As a rule of thumb values 6T 1.5 < d < 2.5 show that there is no auto-correlation in the
data. However, the Durbin-Watson test only analyses linear autocorrelation and only
between direct neighbors, which are first order effects.
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What is The Durbin Watson Test?

The Durbin Watson Test is a measure of autocorrelation (also called serial
correlation) in residuals from regression analysis.

Autocorrelation is the similarity of a time series over successive time
Intervals.

It can lead to underestimates of the standard error and can cause you to
think predictors are significant when they are not.

The Durbin Watson test looks for a specific type of serial correlation,
the AR(1) process.



Durbin Watson test

The Hypotheses for the Durbin Watson test are:
H, = no first order autocorrelation.

H, = first order correlation exists.

(For a first order correlation, the lag is one time
unit).




Durbin Watson test

DIV = _EL?(‘,"_ —tl)

I
f:lfl

Where E, are residuals from an ordinary least squares regression.

The Durbin Watson test reports a test statistic, with a value from 0
to 4, where:

2 Is no autocorrelation.
0 to <2 is positive autocorrelation (common in time series data).

>2 to 4 is negative autocorrelation (less common in time series
data).

A rule of thumb is that test statistic values in the range of 1.5 to
2.5 are relatively normal.

Values outside of this range could be cause for concern.



e

Autocollinearity test
> durbinWatsonTest(model?2)

lag Autocorrelation D-W Statistic p-value

1 -0.05325835 2.104747 0.554

Alternative hypothesis: rho != 0

values in the range of 1.5 to 2.5 are relatively normal.




homoscedasticity

Homoscedasticity described as a condition where the standard deviations are equal for all

points.

Simply put, homoscedasticity means “having the same scatter.” For it to exist in a set of
data, the points must be about the same distance from the line, as shown in the picture
above. The opposite is heteroscedasticity (“different scatter”), where points are at widely

Homoscedasticity

Heteroscedasticity

.
''''''
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Breusch Pagan test

-Heteroskedasticity means changing/non-constant variance.
-In linear regression, error terms should be homoskedastic i.e. they should have a
common constant variance.
-We conduct a Breusch-Pagan test to check for heteroskedasticity among the error terms.
-The Hypothesis of Breusch-Pagan test is:
HO: Data is homoskedastic, ie error variances are equal
H1: Data is heteroskedastic
-We reject HO only if p-value is less than 5%.
-Here, we want the errors to be homoscedastic and so we want to have a p-value to be
greater than 5%
-In R, the Breusch-Pagan test is conducted using the bptest() function available in the
[mtest package.



Breusch Pagan test
Input:

iﬂStaWW.pécEagesE"]mtest”j
Tibrary(Imtest)
bptest(step.model)

Output:

studentized Breusch-Pagan test

data: step.model
EP = 1.707, df = 2, p-value = 0.4259

Inference:
Since the p-value>0.05 , we don’t have enough evidence to reject

HO
We conclude that the error terms are homoscedastic in nature.



* The term inverse can be used with different meanings. The meanings
are: reciprocal. In this case the inverse of log(x) is 1/log(x) inverse
function.

* In this case it refers to solving the equation log(y) = x fory

* in which case the inverse transformation is exp(x) assuming the log is
base e.

 (In general, the solution is b”x if the log is of base b.

« For example, if log10(y) = x then the inverse transformation is 10”x.)
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Shapiro-Wilk test

-The third assumption for a linear regression model is that the residuals/errors follow a normal distribution.

-So to check whether residuals follow a normal distribution we use the Shapiro-Wilk
test.
-The Hypothesis for Shapiro-Wilk test are:
HO: Residuals follow a Normal Distribution
vs H1: Residuals do not follow a Normal Distribution
-If the p-value of this test is less than 5%, we reject HO and conclude that residuals do
not follow a normal distribution.
-Since we want the residuals to follow normal distribution , we want the p-value to be greater than 0.05
-This test can be conducted in R by using the shapiro.test() function from the stats
package.

-This test can only be conducted for a sample size of less than 5000.



Shapiro-Wilk test

Input:

#test for normality of residuals
#shapiro-wilk test
Tibrary("stats")
shapiro.test(step.modelSresiduals)

Output:

> shapiPb.test(step.m0d91SresiduaTS)
Shapiro-Wilk normality test

data: step.model$residuals
W = 0.91598, p-value = 2.628e-07

- Since p-value is less than 0.05, we reject HO and infer that the residuals do not follow
a normal distribution.

- Inreal life data rarely follow a normal distribution and hence to fit a model with normally distributed residuals with
5% level of significance.

»  For this reason, we use a Q-Q plot of the residuals and ascertain the seriousness of
the issue regarding the normality of residuals.



Diagonistic Plots

= plot(step.model)

Hit <Return= to see next plot:
Hit <Return= to see next plot:
Hit <Return= to see next plot:
Hit «<Return= To see next plot:

»The first plot has fitted values on the X-axis
and residuals on the Y-axis.

»This plot is used to identify any non-linear relationship bety
variable.

»The red dotted line should be horizontal line without any d

»>This is a good outcome since it indicates that
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we don’'t have any non-linear relationships.




Model Evaluation

-The Normal Q-Q(quantile-quantile) plot is designed
specially to check for normality of residuals.

-Af residuals are normally distributed the quantiles should
form a straight line , i.e. they should be near to the dotted
line in the plot.

-In this case, the lower tail( lower left corner) is quite far
from the dotted line and the upper tail ( top right corner)
is also a bit far from the line.

-Here, residuals don't seem to follow a Normal Distribution
in the tails. The model is indicating three outliers[131,5
and 132]

Lets look at the next plot while keeping in mind about

the outliers.

Standardized residuals

2
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Mormal Q-Q
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Model Evaluation

»The third diagnostic plot has the fitted values on the X-axis and standardized residuals on the Y-axis. This plot is called a

Scale-Location or Spread-Location plot.

» This plot helps in checking the homoskedasticity of the residual

» A good outcome from this plot is that the red line is horizontal

line.

» The assumption of homoskedasticity fails if the red line is rising]

» Here the red line is horizontal and has almost

equal points on both sides.
» Residuals possess homoskedasticity.
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Model Evaluation

»The fourth plot is of standardized residuals versus leverage.
»Leverage implies the impact of data points on the model.
»Higher the leverage, higher the impact.

»This plot is used to check if the outliers mentioned in the second plot significantly influence the model.

>
>

>

Here, the pattern of the red line is not relevant.

The relevant part is the Cook’s Distance. If the outliers lie beyond this distance we conclude that they significantly

impact our model and should be removed to improve the model.

Here no outliers lie beyond that distance[marked at lower right corner] and so we

conclude that outliers don't significantly impact our regression model.

Residuals vs Leverage
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Thank you



1.2 lcons to use

Q To highlight something important

When giving a reference to extra/additional reading

Q To ask a question

x|+
I

Question to be solved (in class)

‘H Important definition

cc To quote someone
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