Statistical Risk Modelling — Assignment I

1.
i) Writing the state space in the order {Bid (B), Offer (0)}, the generator
matrix is:
B[—}L A J
olu -n)
ii) The holding times are exponentially distributed with parameter A in state
B, and p in state O.
iii)
¢ B3 BB BO
ot B ==k, B A F
0 LBO _- pBB 0
o L= "'“'rPsB _“'rPsB .
iv) We have a two-state model so:
rR:BB + rPsBO =1.
Substituting:
5}
E rﬂBB = '}“'rﬂBB + (1= IEFBB);
i[exp(u +p)t) PBB] = pexp((h + W) ;
ﬁt = St " *
and hence
exp((h+ u)r).rﬂﬂs = }L.exp((l + L)) + constant.
L+
Since the process is in state Bid at time s (i.e. = 0),
the constant is
L+ A
BB _ M A
and thus P~ =—+ exp(—(A+p)f).
A+pn A+p
2.
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%PM{K] =-0.3P,(t)+0.1P(t)+0.3P,.(t)

% s(t)=0.2P_(t)-0.5P (t)+0.1P,(t)

% c(t)=0.1P (t)+0.4P (t)—-0.4P, (1)

iii)
EITHER

To stay in state 4 the equation reduces to:

iP (£)=-0.3P_(t)
df Ad AA

which has solution
P_(t)=exp(-0.3t)
So for 1= 2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 +0.2)*2=0.6

e 2%0.6°
0!

P(P0i(0.6)=0)=

=e™*°=0.5488

iv) The only paths under which the third jump is into state C are BAC, CAC
and CBC.




The probabilities of each jump are given by the ratio of the transition
rates.

So, the probabilities for each path are:
211 2

BAC= .. =
353 45
131 1

CAC= . . =
3143 12

CBC=

15

N
TS

WAY |

Sum = 7/36 = 0.194.
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other

ii) Using the Markov assumption
OR
the Chapman Kolmogorov equation is

34 _ 3l 14 32 24 33 34 34 44 35 54
dr+t Px =1 Px darPxss +r Py g Pyt +f Dy g Pyt +f Dy Gt Pysr T Py dr Prss -

. 54 El
Since dtPy+t =t Py =0

34 32 24 33 34 34 44
di+t Px =t Px dtPxet Tt Px dtPxvt Tt Px dtPxvi-

Given that , p;i, =1
And assuming that, for small dt

a Pl =wldtvod) %]

where lim o(dr) =
dt—0 dt

0,

then substituting, we have

34 32 24 33 34 34
drst Py =t Py Wi dl +; pypydi+, py +o(dt)

34 34 32 24 33 .34
so that de+t Px —t Px =t Px ”.\'Hm *r Py p1.+fdt+0(dl)




The mean is equal to the parameter, so there are 3 calls per hour.
The process is memoryless so the fact that Fred has not had a call for
15 minutes is irrelevant.

Expected time until next call is 20 minutes.

This is the probability of zero calls in time 0.5 hours.
Using p,(t) =€~ (M)’ / j1
OR

-15 0

(1.5
Since py(0.5) = e ") ;

0!
-15

Pp(0.5)=e"""=0.2231.
The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.
Per hour this is 3 calls times 7 minutes = 21 minutes.
So, the probability that the phone is engaged is 21/60 = 0.35.




EITHER

Using the Markov assumption,

OR

The Chapman Kolmogorov equation is
Dy (X1 4 d1) = Py (30, 8) P (2.1 + 1)
+ P (X p o (F.1+dE) + pop (x, ) pp,, (F 1 +dt)

But prg(r.1+df)=0 or other explanation why path through D can be
1gnored

So:
Do (Xt +d1) = P (X 1) P (1.1 +dE) + po (3. 8) Py, (2.1 + 1)
Assuming that, for small dt

; (r.r+df)= ?Ly- (et + o(dt) i=jJ

Dt +dt) =1+ 4 ()dt +o(dr)

OR

pa(t.t+df)=1=2 h;(t)dt +o(dt)

J

. oldt)
where the As are the instantaneous transition rates and 5 5 4

0,
then substituting, we have

P (x.t +df) = pgg(x,)(1=a(f)dt = u(t)dt) + pge (x,1)p(r. C;) + o(dt)
so that

P (x.1+df) = ppg (x.1) = Py (x.)(=o0(r) = p(r))dt
+pgs (x,Dp(t, C,)dt + o(dr)

and hence

fiy PEE (T +dE) = P (x.1)
dt—0 dt

= pgg (x.1)(=o(t) = u(1)) + pgs (x.0)p(r.C;)

d
_ =
drpm;(I )

The equation simplifies when considering pg(f) to

d
—p_(0.0)=—(a(O)+u@)p_ (1)
dit” B fz724




1 d d
—p_(0.0)=- )=—lnp (5.
p_(O,f}drpsz( )=—(a(t)+ (1)) o p_(
HH

Integrate both sides:

—(o(s) +p(s))ds

L

(0] -
5=0

as pH—H(O}=1

i
Py (0,1) = exp—( I (o(s)+ p(s))ds)
5=0




6. All three processes have a discrete state space.
A Markov Chain and Markov Jump Chain both operate in discrete time but a
Markov jump
Process operates in continuous time.
All have the Markov property which is
EITHER that the future development of the process can be predicted from its
present state alone, without reference to its past history.
OR that

PiXed| X, =x. X =x,,.. X, =x,.X,=x]=P[X,e 4 | X,=x]

for all times 5, <5, <...<s, <5 <f,all states x;, x5, ..., x,,, x In S and all subsets 4 of §.

EITHER if a Markov Jump Process X is examined only at the times of its
transitions, the resulting process is called the Jump Chain associated with X.

OR for a Jump Process X the Jump Chain X shows the states visited by X, taking an
identical path through the state space.

The Jump Chain obeys the Markov Property and behaves as a Markov Chain
except when the Jump Chain encounters an absorbing state. From that time, it
makes no further transitions, implying that time stops for the Jump Chain.

The Jump Chain associated with X takes the same path through the state space as
X does. However, questions about the times taken to visit a state are likely to
have different answers for X and for the Jump Chain associated with X.

The Markov Jump Chain and the Markov Chain are expressed in terms of
probabilities

whereas the Markov Jump Process is expressed in terms of rates.

The Markov Chain can have loops in each state, the Markov Jump process cannot
and the

Markov Jump Chain only has loops on absorbing states.




iii)

The maximum likelihood estimates of the transition intensity from state i
to state j is the number of transitions from state i to state j divided by the
total waiting time in state i.

To estimate the transition intensities exactly we therefore need

the total time spent in each state

OR

entry and exit times for each individual for each state,

and the total number of transitions of each type made.

Define p,,(s.t) to be the probability of being in state Active at time s+ if Active at

time s.

Then EITHER

0 .
5 P (5,8)==p 44(s. D1

X
—pur(s.D=p .00,
Py

OR

%p(s,r) = p(s,0)M

where M = [_OH I;J in order Active, Theft,

OR
Integrated forward equations:

T
Pyy(s.0)= exp[—_[uzs pdu)

.
pAT(SJ}ZLZOP‘{A(L”)-H-M“-

Measure from time zero i.e., s = 0 and drop s from notation.
EITHER




%tm(mm _—

hence p ,(t) = exp(—ut + C).
As p,,(0)=1,C=0,so0

P 44(1) = exp(—fir)
A claim occurs with cost £C if moves to state “Theft Claim”.
Hence the expected cost is C (1 exp(-uT))
OR
Solving for p 7, we have

ot

Using an integrating factor, we can write

%[eXP(uf)pAr(f)) — pexp(ur),

exp(U)p 47 () = exp(us) -1,

P () =1—exp(—1),
and hence the expected costis C(1—exp(—uT)).

OR

Solving the integrated forward equation

T

P, (T) :J zﬂexp(—uspds :[—exp(ps)]g =1—exp(-u7),

5

and hence the expected costis C(1—exp(—u7)).

9 Pyr(O)=p(On=_~1-p 7))L (as the model has only two states).

10




1
Active Theft
policy claim
A

We now have & ()= (N +).
So p () =exp(—(L+A)1).

Jd
We want E P70 =p  (Ou=pexp(—(u+A))).

T
Solving this produces p ;7 (f) = (p_-tll) exp(—=(UL+A)1)) i = “% (1—exp(—(u+A)T)) .
So claims become H C(l—exp(—(L+A)T)).
L+A
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.1)

iii)

{0,1,2,3,4...}
s s A A
@ ¢ T
T T h T T n u
Generator matrix
Lives 0 1 2 3 4
0 0 0 0 0
L —(u+a) A 0 0
0 il —(u+4) A 0
0 0 T —(u+21) A
0 0 0 n —(+2)
EITHER

If a Markov jump process Xt is examined only at the times of transition,

the

resulting process is called the jump chain associated with Xt

OR

A jump chain is each distinct state visited in the order visited where the

time

set is the times when states are moved between.

Lives 0

1
w/(u+a)
0
0
0

ete.

0

0
p/(u+n)

0

0

0
()
0
u/(u+i)
0

0
0

A (u+R)
0

p/(u+2)

0
0
0
A (u+2)
0

etc.
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iii)

A generator matrix is a matrix whose entries signify the transition rates

from one state to every other in a Markov Jump process.

Each row of the generator matrix sums up to zero since p;;

:_Ziij.uiij

Required state space is {0, 1, 2}, since the 2 policies in force can still be in
force at a future time, either of the policies can be claimed or ‘lapsed’ or

both can expire at a future time.

0 4;110 1

u21

>
l

13




10.

d
— P (1) ==2tx P ()

d
= E[m%{z)] = -2t

= LnP[E(S) = —s + constant

We know P.E(O) =1, hence constant =0

~

Hence, P ;(s)= exp®
ii) P(in first visit to B at time T in state A at t = 0)

T

= jo P(remains in A to time s)
x P(transition to B in time s, 5 + ds)
x P(remains in B to time T) ds
T

= P_E(s) x 28 X Pﬁ(s,T)ds
5=0

Using the result from part (i) and the similar result for Pgz with boundary

condition Pgg(s, s) = 1, this gives us:

T 3 g
= | e x2sxe™” Y ds

5=0

iii)
a) The sketch should be shaped like:

Probability

Time
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b) Commentary:
e Initially probability increases from 0 at T = 0, and accelerates
as the transition rate from A to B increases.
e However, as transitions increase, it becomes more likely that
the process has already visited state B and jumped back to A.
Therefore, the probability of being in the first visit to B tends
(exponentially) to zero.
c) Differentiate to find turning point:

) )

dl _2 - 2 2
—[e ! xf”}=2txe 2P xe
dt
set derivative equal to zero
2
e x2tx(1-17)=0

implies =1 for a positive solution
and, from above analysis, this is clearly a maximum.
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11.
i)

iii)

Let Nt denote the number of claims up to time t. Since the Poisson process
has stationary increments, we may take t = 0, so that the required
conditional distribution is

PlT,=y, N_.=1
Pl o1y, =) P02 22
5

P( N, =1 N,-N,=0)
P(N, =1)

But NV, — N, is independent of N,
and has the same distribution as N__...

Thus the right hand side above equals

(l}-‘ e—l.\' ) e—?&(s—_l') y

rse S 5

which is the cdf of the uniform distribution on [0, s].
Since holding times are independent, each having an exponential
distribution, their joint density is

n_—h(fp+t+ o+t )
Ae l{.rl_fl\...‘f”}[}}_

We have, as in part (i),
P(N,=k, N,=n)

P(N_=k|N.=n)=
(i 5 | t ??) P(i‘\rr=”)

P( N, =k, N,-N,=n-k)
P(N; =n)

Using again that the Poisson process has stationary and independent
increments, and that the number of claims in an interval [0, t] is Poisson (

B,

we derive from above that
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e—ls{}d)k ‘ e—l(f—s)l}r—k{r - S)n—;(

k! (m—k)!

P(N,=k|N,=n)= oy

n!

_Q-;‘J;’L”Sk(f—s)”-k n

ki(n-k)! g Mynm

_n! sE(t—s)k
kE'(n—-k)! -k

MCICN

which is binomial with parameters » and s/t.
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