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1) 𝑢𝑞𝑥 = Pr⁡[𝑇𝑥 ≤ 𝑢 = Pr[𝐾𝑥 = 0⁡𝑎𝑛𝑑⁡𝑆𝑥 ≤ 𝑢] = Pr[𝐾𝑥 = 0] ∗ Pr[𝑆𝑥 ≤ 𝑢]] 

𝑠𝑖𝑛𝑐𝑒⁡𝐾𝑥⁡𝑎𝑛𝑑⁡𝑆𝑥⁡𝑎𝑟𝑒⁡𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡. 

Pr[𝑆𝑥 ≤ 𝑢] = ∫ 1𝑑𝑥
𝑢

0

= 𝑢, 𝑠𝑖𝑛𝑐𝑒⁡𝑢𝑛𝑖𝑓𝑜𝑟𝑚⁡𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

𝑇ℎ𝑢𝑠, 𝑢𝑞𝑥 = 𝑢 ∗ 𝑞𝑥 ⁡𝑠𝑖𝑛𝑐𝑒 Pr[𝐾𝑥 = 0] = 𝑞𝑥 

2)   

a) Central exposed to risk 

Period of exposure is 1-6-2000 to 25-10-2000 

 = 30 + 31 + 31 + 30 + 25 = 147 days 

 =147/7 = 21 weeks 

b) Initial exposed to risk 

Period of exposure is 1-6-2000 to 31-5-2000 = 52 weeks 

3)   

a) Left Censoring 

Data in this study would be left censored if the censoring mechanism prevent us 

from knowing when the policyholder joined the company. 

This is not present because the policy issue date is given. 

b) Right Censoring 
Data would be right censored if the censoring mechanism cuts short observations in 

progress, so that we are not able to discover when the policy is surrendered. 

Data in this study would be right censored if the policy is terminated before the 

maturity date for reasons than surrender. 

c) Interval Censoring 

Data in this study would be interval censored if the observational plan only allows us 

to say that the duration of policy at the time of surrender fell within some interval of 

time. 

Here we know the calendar year of surrender and the policy issue date, so we will 

know that the duration of the policy falls within one year rate interval. Interval 

censoring is present. 

d) Informative Censoring 

Censoring in this study would be informative if the censoring event divided 

individuals into two groups whose subsequent experience was thought to be 

different. 

Here the censoring event of surrendering the policy might be suspected to be 

informative, as those who are likely to surrender the policy to be in better health 

than those who do not surrender the policy. 
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4)   

a) 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒⁡𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑙𝑖𝑓𝑒, 𝑒𝑥 

𝑒𝑥 = 𝐸[𝑇𝑥] = ∫ 𝑡𝑝𝑥

𝜔−𝑥

0

𝑑𝑡 

This represents the integral of the probability of survival at each future age, i.e., the 

expected 

future lifetime of a life currently aged x. In other words, this is the expectation of life 

at age x or 

how many years a life is expected to live given that it is currently x years old. 

b) The curtate expectation of life 

𝑒𝑥 = ∑𝑘𝑝0

∞

𝑘=1

= ∑𝑒−0.0325𝑘
∞

𝑘=1

=
𝑒−0.0325

1 − 𝑒−0.0325
= 30.27 

c) The probability that a life aged exactly 36 will survive to age 45. 

9𝑝36 = exp [−∫ 0.0325𝑑𝑡
9

0

] = 𝑒−0.2925 = 0.7464 ≈ 75% 

d) The exact age x representing the median of the life-time T of a newborn baby. 

The median of the life-time T implies that the probability, xp0 = 0.5 

𝑇ℎ𝑢𝑠, 𝑥𝑝0 = 0.5 ⇒ exp(𝑥 − 0.0325) = 0.5 ⇒ 𝑥 = −(
log0.5

0.0325
) = 21.33 

5)   

i) Gompertz law is suitable for human mortality for middle to older ages i.e., 

Between ages 35 to 90 years. 

ii) We know that 

𝑡𝑝𝑥 = exp (−∫ 𝜇(𝑥+𝑠)𝑑𝑠
𝑡

0

) = exp(−∫ 𝐵𝑐𝑥+𝑠𝑑𝑠
𝑡

0

) 

𝑊𝑒⁡𝑐𝑎𝑛⁡𝑤𝑟𝑖𝑡𝑒⁡𝑐𝑥+𝑠⁡𝑎𝑠⁡𝑐𝑥𝑒𝑠∗𝑙𝑜𝑔𝑐 , 𝑠𝑜⁡𝑡ℎ𝑎𝑡⁡𝑡ℎ𝑒⁡𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙⁡𝑏𝑒𝑐𝑜𝑚𝑒𝑠: 

∫ 𝐵 ∗ 𝑐𝑥 ∗ 𝑒𝑠∗log 𝑐𝑑𝑠
𝑡

0

=
𝐵𝑐𝑥

log 𝑐
[𝑒𝑠∗log 𝑐]

0

𝑡
=

𝐵𝑐𝑥

log 𝑐
[𝑐𝑠]0

𝑡 =
𝐵𝑐𝑥

log 𝑐
[𝑐𝑡 − 1] 

𝐼𝑓⁡𝑤𝑒⁡𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒⁡𝑡ℎ𝑒⁡𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁡𝑔⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝑙𝑜𝑔𝑔

= −
𝐵

log 𝑐
, 𝑡ℎ𝑒⁡𝑣𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙⁡𝑖𝑠 − 𝑙𝑜𝑔𝑔

∗ 𝑐𝑥(𝑐𝑡 − 1)⁡𝑎𝑛𝑑⁡𝑤𝑒⁡𝑓𝑖𝑛𝑑⁡𝑡ℎ𝑎𝑡: 

𝑡𝑝𝑥 = exp⁡[log 𝑔 ∗ 𝑐𝑥(𝑐𝑡 − 1) = (𝑒log𝑔) ∗ 𝑐𝑥 ∗ (𝑐𝑡 − 1) = 𝑔𝑐𝑥(𝑐𝑡 − 1) 
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6)   

i) Female smoker aged 30 at entry. 

ii) 
ℎ𝑗(𝑡)

ℎ𝑖(𝑡)
=

exp−0.05

exp0.1
= 0.86070 

Where j is male smoker aged 30 at entry and i is female smoker aged 40 at entry. 

𝐵𝑢𝑡⁡𝑠(𝑡) = exp(−∫ℎ(𝑠)𝑑𝑠

𝑡

0

)ℎ𝑒𝑛𝑐𝑒 

𝑠𝑗(𝑡) = (𝑠𝑖(𝑡))
0.86070

 

Which implies that 

𝑠𝑗(𝑡) > 𝑠𝑖(𝑡)⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑡 > 0 

iii) 
ℎ𝑗(𝑡)

ℎ𝑖(𝑡)
=

exp0.2

exp0.05
= 1.161 

Where j is male smoker aged 30 at entry and i is male smoker aged 40 at entry 

𝐵𝑢𝑡⁡𝑠(𝑡) = exp(−∫ℎ(𝑠)𝑑𝑠

𝑡

0

)ℎ𝑒𝑛𝑐𝑒 

𝑠𝑗(𝑡) = (𝑠𝑖(𝑡))
1.161

 

Which implies that 

𝑠𝑗(𝑡) < 𝑠𝑖(𝑡)⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑡 > 0 

7)   

i) The most appropriate rate interval to use (for lives classified x) is the policy year 

rate interval starting on the policy anniversary where lives are aged x next 

birthday. 

The reason is that this corresponds to the definition of the deaths and the rate is 

more sensitive to errors in approximation of the numerator than the 

denominator. 

The average age at the start of the rate interval is x – ½ assuming that birthdays 
are uniformly distributed over the policy year. 

ii) We will use the following symbols: 

𝑃𝑥,𝑡 to represent the in force at time t from the 1 January 1997 classified x next 

birthday on policy anniversary nearest to time t 

𝜃𝑥.𝑡 to represent the deaths in the calendar year 1997 aged x next birthday on 

policy anniversary (= age next birthday at entry plus curtate duration at date of 

death) before death 

𝐸𝑥 ⁡𝐸𝑥
𝑐 to represent the initial and central exposed to risk respectively of lives age 

x last birthday on previous policy anniversary. 

𝑃𝑥(𝑡) to represent the in force at time t from the 1 January 1997 classified x next 

birthday on the policy anniversary preceding time t. 

𝑁𝑜𝑤⁡𝑃𝑥(𝑡) =
1

2
(𝑃𝑥,𝑡 + 𝑃𝑥+1,𝑡) assuming that policy anniversaries are uniformly 

distributed over the calendar year. 

𝐸𝑥
𝑐 = ∫ 𝑃𝑥(𝑡)𝑑𝑡

10

0
=

1

2
∑ (𝑃𝑥(𝑡) + 𝑃𝑥(𝑡 + 1))9
𝑡=0  if the in-force population varies 

linearly between the dates of the investigation. 

𝐸𝑥 = 𝐸𝑥
𝑐 +

1

2
∑ 𝜃𝑥,𝑡
9
𝑡=0  assuming that in aggregate the deaths occur on average 

halfway through the policy year. 
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8)   

i) Types of censoring presents: 

• Type I censoring present because the study ends at a predetermined 

duration of 45 days. 

• Type II censoring is not present because the study did not end after a 

predetermined number of patients had died. 

• Random censoring is present because the duration at which a patient left 

hospital before the study ended can be considered as a random variable. 

• Right Censoring is present for those lives that exit before the end of 

investigation period. 

ii) The censoring is likely to be informative. 

The patients who died were probably recovering less well that patient who 

discharged from the hospital. 

If they had not died, they would likely to remain in the hospital for longer than 

those who were not censored. 

iii) The Kaplan-Meier estimate of the survival function is estimated as follows: 

T n d c d/n (1-d/n) S(t) 
0  13      
5 13 1 0 0.0769 0.9231 0.92 
7 12 1 0 0.0833 0.9167 0.85 
14 11 1 2 0.0909 0.9091 0.77 
28 8 1 2 0.1250 0.8750 0.67 
35 5 1  0.2000 0.8000 0.54 

So, the value survival function at end of investigation period is 0.54 

Assumptions: 

➢ The censoring happens just after the death. 

➢ Ignoring the discharge on any other ground except recovery from illness. 

➢ Ignore any admission period before the start of investigation. 

iv) Comments: 

• The survival of a patient from the infection who given treatment is around 

50% considering the answer in c) above. 

• However, the hospital excluded the number of deaths who died within two 

weeks of observation period. 

• It also ignores the admission pre investigation period 

• It is assuming that the censored patient at the end of investigation will 

survive for sure. 

• Also ignoring the patients being discharged on any other ground like 

shifting to another hospital etc. 

• It claims that 8 out of 10 patients who responded the treatment beyond 

two weeks would survive. 

• So, the claims must be viewed with respect to above considerations. 
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9)   

i)   

a) Under the uniform distribution of deaths assumption: 

∫ 𝑡𝑃𝑥𝑑𝑡
1

0

= ∫ (1 − 𝑡𝑞𝑥)𝑑𝑡
1

0

= [𝑡 − 0.5𝑡2𝑞𝑥]0
1 

𝑆𝑖𝑛𝑐𝑒⁡𝑞𝑥 = 0.3,𝑤𝑒⁡ℎ𝑎𝑣𝑒 

𝑚𝑥 =
0.3

1 − 0.15
= 0.352941 

b) Under the constant force of mortality: 
𝑞𝑥 = 1 − 𝑒−𝜇 

∫ 𝑡𝑃𝑥𝑑𝑡
1

0

= ∫ 𝑒−𝜇𝑑𝑡
1

0

=
1

𝜇
∗ (1 − 𝑒−𝜇) =

𝑞𝑥
𝜇

 

𝑆𝑜,𝑚𝑥 = 𝜇 = − ln(1 − 𝑞𝑥) = − ln 0.7 = 0.356675 

 

10)   

i) Under the Cox model everyone’s hazard is proportional to the baseline hazard, 

with the constant of proportionality depending on certain measurable quantities 

called co-variates. Hence the model is also called a proportional hazards model. 

ii) (t) 0(t)exp (F* F M * M D * D), where (t) is the estimated hazard and 0 (t) is the 

baseline hazard. 

iii) The baseline hazard refers to annual policy taken through the Online channel and 

where premiums are paid by direct debit. 

iv) The results imply that 

exp⁡[(βD⁡*1)]/⁡exp⁡[(βD⁡*1)⁡+⁡βF*1⁡+⁡βM*1]⁡=⁡0.75 

exp⁡(βF⁡+⁡βM)⁡=⁡4/3 

exp⁡(βD*1)⁡/⁡exp⁡[(βF⁡*1)]⁡=⁡1 

exp⁡(βM*1)⁡/⁡exp⁡[(βD⁡*2)]⁡=⁡0.75 

Substituting from (2) into (1) gives 
exp⁡(βD⁡+⁡βM)⁡=⁡4/3 

exp(βD)⁡*⁡exp(βM)⁡=⁡4/3 

From equation 3 

(Exp(βD))⁡^2*0.75⁡=⁡exp(βM) 

So 

Substituting in equation 4 

exp(βD)⁡*⁡(exp(βD))2*0.75⁡=⁡4/3 

(Exp(βD))⁡^3=⁡1.7778 

exp(βD)⁡=⁡1.2114 

βD⁡=⁡0.19179 

βF⁡=⁡0.19179 

βM⁡=⁡0.0959 
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11)      

ii)   

T S(t)  Λ(t) nt dt ct 
0 1 0 12 0  
1 0.9167 0.0833 12 1 2 
3 0.7130 0.22 9 2 2 
6 0.4278 0.4 5 2 3 

iii) Summing up the number of deaths we have total deaths = d1+d3+d6= 

1+2+2=⁡5.⁡Since⁡we⁡started⁡with⁡12⁡insects,⁡the⁡remaining⁡7⁡insects’⁡histories⁡

were right censored. 

12)   

i) Gompertz Law:  

Gompertz Law is an exponential function, and it is often a reasonable assumption 

for middle and older ages. It can be expressed as follows: 

𝜆𝑥 ⁡= ⁡𝐵𝑐𝑥; ⁡𝑤ℎ𝑒𝑟𝑒, 𝜆𝑥 ⁡𝑖𝑠⁡𝑎⁡𝑓𝑜𝑟𝑐𝑒⁡𝑜𝑓⁡𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦⁡𝑎𝑡⁡𝑎𝑔𝑒⁡𝑥 

ii) Substituting, 𝐵𝐵 = exp (𝛽0+𝛽1𝑋1 + 𝛽2𝑋2) ; into the Gompertz model, 

𝜆𝑥 = exp (𝛽0+𝛽1𝑋1 + 𝛽2𝑋2). 𝑐^𝑥; defining x as duration since 50th birthday. 

The hazard can therefore be factorized into two parts: 

exp (𝛽0+𝛽1𝑋1 + 𝛽2𝑋2), which depends only on the values of the covariates, and 

𝑐𝑐𝑥𝑥, which depends only on duration. 

So, the ration of between the hazards for any two persons with different 

characteristics does 

not depend on duration, and so the model is a proportional hazards model. 

iii) The baseline hazard in this model relates to a non-smoker female 

iv) For a female cigarette smoker, we have 

𝑋1 = 0 and 𝑋2 = 1 and x = 4 

Therefore, the hazard at age 54 is given by 

𝜆𝑥 = exp (𝛽𝛽0 + 𝛽𝛽1. 0 + 𝛽𝛽2. 1). 𝑐^4 

 = exp (-4+0.65) x 1.05^4 

 = 0.0351x1.2155 

 = 0.04266 

v) The hazard for a non-smoker⁡at⁡duration,⁡‘s’⁡is⁡given⁡by⁡the⁡formula 

𝜆𝑠 = exp(𝛽0+𝛽1𝑋1). 𝑐^𝑠 

The⁡hazard⁡for⁡a⁡smoker⁡at⁡duration,⁡‘t’⁡is⁡given⁡by⁡the⁡formula 

𝜆𝑡 = exp (𝛽0+𝛽1𝑋1 + 0.65). 𝑐^𝑡 

If⁡the⁡smoker’s⁡and⁡non-smoker’s⁡hazards⁡are⁡the⁡same,⁡then 

𝜆𝑠 = 𝜆𝑡 

i.e., exp(𝛽0+𝛽1𝑋1). 𝑐^𝑠 = exp (𝛽0+𝛽1𝑋1 + 0.65). 𝑐^𝑡 

i.e., 𝑐^𝑠 = exp (0.65). 𝑐^𝑡 

i.e., 𝑐^(𝑠−𝑡) = exp (0.65) = 1.9155 

Since, c = 1.05 

Hence, 1.05^(𝑠−𝑡) = 1.9155 

So, s-t = ln (1.9155)/ln (1.05) = 0.65/0.04879 

s-t = 13.32 

Hence, when the two hazards are equal, the non-smoker is approximately 13 

years older than the smoker. 
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13)   

i) (Let⁡P’x(t)⁡be⁡the⁡number⁡of⁡policies⁡in⁡force⁡aged⁡x⁡nearest⁡birthday⁡at⁡time⁡t. 

Also, let Px(t) be the number of policies in force aged x last birthday at time t. 

Let Ex^C refer to the central exposed to risk at age label x respectively. 

𝐸𝑥
𝐶 = ∫ 𝑃′𝑥(𝑡)𝑑𝑡

2

𝑡=0

 

If P’56(t)⁡is⁡linear⁡over⁡the⁡year⁡(2015,2016)⁡and⁡(2016,2017),⁡we⁡can 

approximate the exposure as follows 

E56^c⁡=⁡½*(P’56(2015)⁡+⁡P’56(2016))⁡+⁡½*(P’56(2016)⁡+⁡P’56(2017)) 
=⁡½*P’56(2015)⁡+⁡P’56(2016)⁡+½*P’56(2017) 

Since, the number of policyholders aged label 56 nearest birthday will be between 

55.5 and 56.5 i.e., between age label 55 last birthday and 56 last birthdays. 

Assuming that the birthdays are uniformly distributed over the calendar year: 

P’56(2015)⁡=⁡½*(P55(2015) + P56(2015)) 

= 20050 

Similarly, 

P’56(2016)⁡=⁡½*(P55(2016)⁡+⁡P56(2016)) 

= 20800 

And, 

P’56(2017)⁡=⁡½*(P55(2017)⁡+⁡P56(2017)) 

= 19250 

E56^c = ½*20050+20800+1/2*19250 

= 40450 

µ56 = d56/ E56^c 

= 1380/40450 

= 0.0341 

Deriving the force of mortality for age 57 as above: 

P’57(2015)⁡=⁡½*(P56(2015)⁡+⁡P57(2015)) 

= 19850 

Similarly, 

P’57(2016)⁡=⁡½*(P56(2016)⁡+⁡P57(2016)) 

= 20900 

And, 

P’57(2017)⁡=⁡½*(P56(2017)⁡+⁡P57(2017)) 

= 17500 

E57c = ½*19850+20900+1/2*17500 

= 39575 

µ57 = d57/ E57^c 

= 1420/39575 

= 0.03588 

dx is deaths aged x nearest birthday on the date of death. So, the age label at death 

changes 

with reference to life year. Therefore, the age at the middle of life year is x and 

estimates µx. 

ii) We can estimate the initial rates of mortality using the estimated values of µ from 

part (i) and the following formula 

q55.5 = 1- exp(-µ56) 

= 0.0335 

And 
q56.5 = 1- exp(-µ57) 
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= 0.0352 

14)   

15)   

i) Two advantages of central exposed to risk over initial exposed to risk are: 

a) The central exposed to risk is simpler to calculate from the data typically 

available compared to the initial exposed to risk. Moreover, central exposed 

to risk has an intuitive appeal as the total observed waiting time and is easier 

to understand than the initial exposed to risk. 

b) It is difficult to interpret initial exposed to risk in terms of the underlying 

process being modelled if the number of decrements under study increase or 

the situations become more elaborate. On the contrary, the central exposed to 

risk is more versatile and it is easy to extend the concept of central exposed to 

risk to cover more elaborate situations. 

ii) Calculation of exposed to risk: 

Rita 

Rita turned 30 on 1 October 2009, when she was already married. She died on 1 

January 2010, 3 months after her 30th birthday. 

Thus,⁡Rita’s⁡contribution to central exposed to risk = 3 months 

And contribution to initial exposed to risk = 1 year 

Sita 

Sita turned 30 on 1 September 2011, when she was already married. Time spent 

under investigation, aged 30 last birthdays by Sita was 1 September 2011 – 31 

August 2012. 

Thus,⁡Sita’s⁡contribution⁡to⁡both⁡central⁡and⁡initial⁡exposed⁡to⁡risk⁡is⁡1⁡year. 

Nita 

Nita turned 30 on 1 December 2009 and married 2 months later. Therefore, she 

joined the investigation of married women on 1 February 2010. She divorced 9 

months later, when she would be censored from the investigation of married 

women. 

Thus,⁡Nita’s⁡contribution⁡to⁡both⁡central⁡and⁡initial⁡exposed⁡to⁡risk⁡is⁡9⁡months. 

Gita 

Gita got married on 1 June 2011, at which time she was already past her 31st 

birthday. Therefore, she has spent no time during the investigation period as a 

married woman at age 30 last birthday. 

Thus, her contribution to both central and initial exposed to risk is nil. 

iii) Total exposed to risk: 

Hence, total exposed to risk is: 

Central exposed to risk = 0.25 + 1 + 0.75 + 0 = 2 years. 

Initial exposed to risk = 1 + 1 + 0.75 + 0 = 2.75 years 

From the results above, the central exposed to risk is 2 years and the initial 

exposed to risk is 2.75 years. The approximation would suggest that the initial 

exposed to risk should be 2.5 years. However, this is not a good approximation for 

the data provided as the approximation is based on the assumption that deaths 

would be evenly spread and thus can be assumed to occur halfway through the 

year, on average. This also relies on an implicit assumption of a reasonably large 

data set. In the data above, there were only 4 lives, which is not statistically 

significant. Moreover, there was only one death, which occurred 3 months after 

the 30thbirthday. As a result of the statistical sparseness in the data, the 

approximation is seen not to work very well. 


