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Statistical and Risk Modelling  - Assignment 1 

Palak Nagdev, Roll number 22 
 

 

1. 𝑃(𝑇𝑥 ≤ 𝑢) =  𝑢𝑞𝑥  

∴ 𝑃(𝐾𝑥 = 0  𝑎𝑛𝑑  𝑆𝑥  ≤ 𝑢) =  𝑢𝑞𝑥                  … ( 0 < 𝑢 < 1 𝑎𝑛𝑑 𝑇𝑥 =  𝐾𝑥 +  𝑆𝑥) 

Because Kx and Sx are independent, 

∴ 𝑃(𝐾𝑥 = 0 ) ∗ 𝑃( 𝑆𝑥  ≤ 𝑢) =  𝑢𝑞𝑥  

∴  𝑞𝑥 ∗ 𝑢 =   𝑢𝑞𝑥 

∴ 𝑢𝑞𝑥 = 𝑢 ⋅ 𝑞𝑥    𝑤ℎ𝑒𝑟𝑒 0 < 𝑢 < 1 

Hence Proved. 
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2.  

A- 

The life will be age 54 last birthday between 1/6/2000 and 31/5/2001. 

But the life died on 25/10/2000 

∴ The central exposed to risk of the life aged 54 last birthday is from 1/6/2000 to 

24/10/2000. (Including the first day and excluding the last day) 

number of days = 146 days 

number of weeks = 146/7 

                                                   = 20.85714 weeks 

                                                   ≈ 21 𝑤𝑒𝑒𝑘𝑠 

B-  

The life was alive on 1/6/2000 when he attained the exact age 54 

Therefore, Initial exposed to risk of the life aged 54 last birthday is from 1/6/2000 to 

31/5/2001. 

= 52 weeks 
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3. ] 

Left censoring 

Left censoring occurs when a data point is below a certain value but is unknown by how 

much.  

Left censoring is not present in the dataset 

Right censoring 

Right censoring occurs when a data point is above a certain value but is unknown by how 

much. 

Right censoring is present in the dataset. If any life does not surrender his/her policy then 

the life is right censored. Also, if the exit from policy is due to any other reasons, then the 

policy is not surrendered and hence is an example of right censoring. If the policy matures 

instead of being surrendered then it is an example of right censoring as well. 

Interval Censoring 

Interval censoring occurs when a data point is somewhere in an interval between two 

periods. 

Interval censoring is present in the dataset as we do not know the exact date of surrender 

but only the calendar year. 

Informative censoring 

When censoring of a data point occurs, if we get additional information from the censoring 

then it can be termed as informative censoring. 

Informative censoring is present in the dataset as the policy holder can exit due to other 

reasons and hence, we can get certain additional information about the life. 
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4. (i) 

Complete expectation of life (𝑒̇𝑥)  = ∫ 𝑡𝑃𝑥 𝑑𝑡
𝜔−𝑥

0
 = ∫ 𝑆𝑥(𝑡) 𝑑𝑡

𝜔−𝑥

0
 

E[Tx] is the expected complete future lifetime of a life aged ‘x’. 

(ii) The curate expectation of life 

𝑡𝑃𝑥 =  𝑒− ∫ 𝑢𝑥+𝑠𝑑𝑠
𝑡

0  

For constant force of mortality, 

  
𝑡𝑃𝑥 =  𝑒−𝑢∗𝑡 

E[Kx] = 𝑒𝑥 = ∑ 𝑘𝑝𝑥
[𝜔−𝑥]
𝑘=1  

𝑒𝑥 = ∑ 𝑒−𝑢∗𝑘

[𝜔−𝑥]

𝑘=1

 

 

𝑒𝑥 = 𝑒−𝑢 +  𝑒−2𝑢 + 𝑒−3𝑢 + ⋯ +  𝑒−[𝜔−𝑥]∗𝑢 

𝑒𝑥 =  
𝑒−𝑢

1 − 𝑒−𝑢
 

𝑒𝑥 =  
𝑒−0.0325

1 − 𝑒−0.0325
 

𝑒𝑥 = 30.27194 𝑦𝑒𝑎𝑟𝑠 

(iii) Probability that a life aged exactly 36 will survive to age 45 

For constant force of mortality, 

𝑡𝑃𝑥 =  𝑒−𝑢∗𝑡 

9𝑃36 =  𝑒−0.0325∗9 

9𝑃36 =  0.746395245 

(iv) The exact age x representing the median of the life time T of a new born baby 

𝑃(𝑇0 ≤ 𝑥) = 0.5 

𝑥𝑞0 = 0.5 

 1 −  𝑥𝑃0 = 0.5 

1 − 𝑒−𝑢∗𝑥 = 0.5 

1 − 𝑒−0.0325∗𝑥 = 0.5 

0.5 = 𝑒−0.0325∗𝑥 
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ln(0.5) = −0.0325 ∗ 𝑥 

∴ x = 21.327 years 
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5.  

(i) 

Gompertz law is an appropriate model for human mortality for range 30 to 80 years. 

 (ii) 

For Gompertz law 

𝑢𝑥 = 𝐵𝑐𝑥 

We also know, 

𝑢𝑥+𝑡 =  −
1

𝑡𝑃𝑥
∗

𝑑

𝑑𝑡
𝑡𝑃𝑥 

𝑢𝑥+𝑡 =  −
𝑑

𝑑𝑡
ln (𝑡𝑃𝑥) 

𝐵𝑐𝑥+𝑡 =  −
𝑑

𝑑𝑡
ln (𝑡𝑃𝑥) 

Integrating on both sides, 

∫ 𝐵𝑐𝑥+𝑠
𝑡

0

𝑑𝑠 =  − ln(𝑡𝑃𝑥) 

∫ 𝐵𝑐𝑥+𝑠 𝑑𝑠
𝑡

0

=  − ln(𝑡𝑃𝑥) 

∫ 𝐵𝑐𝑥𝑐𝑠 𝑑𝑠
𝑡

0

=  − ln(𝑡𝑃𝑥) 

∫ 𝐵𝑐𝑥𝑐𝑠 𝑑𝑠
𝑡

0

=  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥 ∫ 𝑐𝑠 𝑑𝑠
𝑡

0

=  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥 ∫ 𝑒𝑙𝑛𝑐𝑠
 𝑑𝑠

𝑡

0

=  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥 ∫ 𝑒𝑙𝑛𝑐𝑠
 𝑑𝑠

𝑡

0

=  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥 ∫ 𝑒𝑠𝑙𝑛𝑐  𝑑𝑠
𝑡

0

=  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑒𝑙𝑛𝑐𝑠

]0
𝑡 =  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑐𝑠]0

𝑡 =  − ln(𝑡𝑃𝑥) 
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𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑐𝑡 − 𝑐0] =  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑐𝑡 − 1] =  − ln(𝑡𝑃𝑥) 

𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑐𝑡 − 1] =  − ln(𝑡𝑃𝑥) 

−[𝑐𝑡 − 1] = ln(𝑡𝑃𝑥) 

𝑒−
𝐵𝑐𝑥

𝑙𝑛𝑐
[𝑐𝑡−1] =  𝑡𝑃𝑥 

𝑒−
𝐵

𝑙𝑛𝑐
 𝑐𝑥[𝑐𝑡−1] =  𝑡𝑃𝑥 

Substituting 𝑙𝑛𝑔 =  −
𝐵

𝑙𝑛𝑐
 

𝑒(𝑙𝑛𝑔) 𝑐𝑥[𝑐𝑡−1] =  𝑡𝑃𝑥 

𝑔𝑐𝑥[𝑐𝑡−1] =  𝑡𝑃𝑥 

Hence Proved. 

Under Gompertz Law, 

𝑡𝑃𝑥 =  𝑔𝑐𝑥[𝑐𝑡−1]       𝑤ℎ𝑒𝑟𝑒 𝑔 =  𝑒−
𝐵

𝑙𝑛𝑐
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6. The study is been conducted to investigate the effect of a newly invented drug on a 

group of patients who are suffering from cancer. 

The hazard function for life ‘i’ at duration ‘t’, ki given by 

ℎ𝑖(𝑡) =  ℎ0(𝑡) ∗  𝑒{0.01∗(𝑥𝑖−30)+0.2∗𝑦𝑖−0.05∗𝑧𝑖 

Where, 

ℎ𝑖(𝑡) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑖𝑓𝑒 𝑖 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 

ℎ0(𝑡) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑥𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 

𝑥𝑖  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑎𝑔𝑒 𝑜𝑓 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑓𝑒 𝑖 

𝑦𝑖 = 1 𝑖𝑓 𝑙𝑖𝑓𝑒 𝑖 𝑎 𝑛𝑜𝑛 − 𝑠𝑚𝑜𝑘𝑒𝑟, 𝑒𝑙𝑠𝑒 0  

𝑧𝑖 = 1 𝑖𝑓 𝑙𝑖𝑓𝑒 𝑖 𝑎 𝑚𝑎𝑙𝑒, 0 𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒 

(a) 

The baseline hazard function applies to a female smoker whose age is 30 years at the 

time of entry into the observation. 

(b) 

To compare the survival function of a male smoker aged 30 at entry relative to a female 

smoker aged 40 at entry 

For a male smoker aged 30 at entry, 

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑡) =  ℎ0(𝑡) ∗  𝑒−0.05 =  ℎ0(𝑡) ∗ 0.9512294  

For a female smoker aged 40 at entry, 

ℎ𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑡) =  ℎ0(𝑡) ∗  𝑒0.1 =  ℎ0(𝑡) ∗ 1.105171  

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑡)

ℎ𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑡)
=

ℎ0(𝑡) ∗ 0.9512294 

ℎ0(𝑡) ∗ 1.105171
= 0.860708 

𝑆𝑥(𝑡) = 𝑒− ∫ ℎ𝑖(𝑠)𝑑𝑠
𝑡

0  

For male smoker aged 30 at entry, 

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒− ∫ ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒− ∫ 0.860708∗ℎ𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒−0.860708 ∫ ℎ𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = (𝑒− ∫ ℎ𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0 )0.860708 

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = (𝑆𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 40(𝑡))0.860708 
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 Therefore,  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) > 𝑆𝑓𝑒𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 40(𝑡)   (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡) 

(c) 

To compare the survival function of a male smoker aged 30 at entry relative to a male 

smoker aged 40 at entry 

For a male smoker aged 30 at entry, 

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑡) =  ℎ0(𝑡) ∗  𝑒−0.05 =  ℎ0(𝑡) ∗ 0.9512294  

For a male smoker aged 40 at entry, 

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑡) =  ℎ0(𝑡) ∗  𝑒0.05 =  ℎ0(𝑡) ∗ 1.0512711  

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑡)

ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑡)
=

ℎ0(𝑡) ∗ 0.9512294 

ℎ0(𝑡) ∗ 1.0512711
= 0.9048374 

𝑆𝑥(𝑡) = 𝑒− ∫ ℎ𝑖(𝑠)𝑑𝑠
𝑡

0  

 

For male smoker aged 30 at entry, 

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒− ∫ ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 30(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒− ∫ 0.9048374∗ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = 𝑒−0.9048374 ∫ ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0  

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = (𝑒− ∫ ℎ𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟,𝑎𝑔𝑒𝑑 40(𝑠) 𝑑𝑠
𝑡

0 )0.9048374 

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) = (𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 40(𝑡))0.9048371 

Hence 

𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 30(𝑡) > 𝑆𝑚𝑎𝑙𝑒,𝑠𝑚𝑜𝑘𝑒𝑟.𝑎𝑔𝑒𝑑 40(𝑡)   (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡) 
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7. (i) 

The rate interval that would be used for the investigation would be age nearest birthday. 

The reason for this, is that the number of deaths is classified in terms of age next 

birthday. 

(ii) 

Let 𝑃𝑥,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑖𝑛 𝑓𝑜𝑟𝑐𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑔𝑒 𝑛𝑒𝑥𝑡 𝑏𝑖𝑟𝑡ℎ𝑑𝑎𝑦  

𝐸𝑥
𝑐 =  ∫ 𝑃𝑥(𝑡)

10

0

𝑑𝑡 

𝐸𝑥
𝑐 =  ∑ 1 ∗

1

2
∗ 𝑃(𝑥, 𝑡) + 𝑃(𝑥, 𝑡 + 1)

9

0

 

𝐸𝑥 = 𝐸𝑥
𝑐 +

1

2
∑ 𝑑𝑥

10

0
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8.  

The types of censoring present in the investigation are as follows: 

a) Right censoring 

Right censoring is present in the dataset because the decrement in life occurs even when 

they are discharged or a period of 45 days are elapsed. Since, they didn’t die, we were not 

able to study the mortality of the lives which was the objective of the study. 

b) Type I censoring 

Sine, there is a fixed time period of 45 days for the investigation, Type I censoring is present. 

c) Random censoring 

Since, the lives leave the investigation for reasons other than death and the time of exit is 

not known in advance, random censoring is present in the dataset. 

d) Informative censoring 

The lives that are discharged can be assumed to have low mortality; hence informative 

censoring is present in the investigation. 

 (ii) 

Yes, the censoring is likely to be informative in case where the person leaves the 

investigation owing to discharge.  

(iii) 

Assuming that the censoring present in the investigation is non-informative 

Kaplan-Meier estimate of the survivor function for the patients 

j tj dj nj 
𝜆̂𝑗 =

𝑑𝑗

𝑛𝑗
 

1-𝜆̂𝑗 ∏(1 − 𝜆̂𝑗)

𝑡𝑗≤𝑡

 

1 5 1 13 0.07692 0.92308 0.92308 

2 7 1 12 0.08333 0.91667 0.8461597 

3 14 1 11 0.09091 0.90909 0.769235 

4 28 1 8 0.125 0.875 0.673081 

5 35 1 5 0.2 0.8 0.538465 

 

Range  𝑠̂(𝑡) 
 

0 ≤ t < 5 1 

5 ≤ t < 7 0.92308 

7 ≤ t < 14 0.8461597 

14 ≤ t < 28 0.769235 

28 ≤ t < 35 0.673081 

35 ≤ t < 45 0.538465 
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(iv) 

𝑠̂(14) = 0.769235. 

Therefore, the hospital claim is not true. Since, the survival probability after 14 days 

0.769235. 
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9.  

 

(i) 

(a) 

𝑚𝑥 =  
𝑞𝑥

∫ 𝑡𝑃𝑥 𝑑𝑡
1

0

 

𝑚𝑥 =  
0.3

∫ 1 − 𝑡𝑞𝑥 𝑑𝑡
1

0

 

For uniform distribution of deaths between x and x+1 

𝑚𝑥 =  
0.3

∫ 1 − 𝑡 ∗ 𝑞𝑥 𝑑𝑡
1

0

 

𝑚𝑥 =  
0.3

∫ 1 − 0.3𝑡 𝑑𝑡
1

0

 

𝑚𝑥 =  
0.3

[𝑡 − 0.3 ∗
𝑡2

2 ]0
1

 

𝑚𝑥 =  
0.3

[1 − 0.3 ∗
1
2]

 

𝑚𝑥 = 0.3529412 

(b) 

To find: mx assuming constant force of mortality between ages x and x+1 

𝑚𝑥 =  
𝑞𝑥

∫ 𝑡𝑃𝑥 𝑑𝑡
1

0

 

For constant force of mortality between ages x and x+1 

𝑡𝑞𝑥 = 1 − 𝑒−𝑢∗𝑡 

1 −  𝑡𝑞𝑥 =  𝑒−𝑢∗𝑡 

1 −  𝑡𝑞𝑥 =  𝑒−𝑢∗𝑡 

1 −  𝑞𝑥 =  𝑒−𝑢 

𝑒−𝑢 = 0.7 

𝑚𝑥 =  
0.3

∫ 𝑒−𝑢∗𝑡 𝑑𝑡
1

0
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𝑚𝑥 =  
0.3

∫ 0.7𝑡 𝑑𝑡
1

0

 

𝑚𝑥 =  
0.3 ∗ ln (0.7)

[0.7𝑡]0
1  

𝑚𝑥 =  
0.3 ∗ ln (0.7)

[0.71 − 1]
 

𝑚𝑥 = 0.35667 
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10.  

 

(i) 

Cox model is also called as a proportional hazard model since, the hazard function of a life is 

proportional to a baseline hazard function. 

(ii) 

Equation for Cox Proportional Model 

ℎ𝑖(𝑡) =  ℎ0(𝑡) ∗ 𝑒𝛽𝐹∗𝐹+ 𝛽𝐷∗𝐷+ 𝛽𝑀∗𝑀 

Where,  

ℎ𝑖(𝑡) = 𝐻𝑎𝑧𝑟𝑎𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑖𝑓𝑒 𝑖 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 t 

ℎ0(𝑡) = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑧𝑟𝑎𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑖𝑓𝑒 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 t 

𝛽𝐹, 𝛽𝐷, 𝛽𝑀 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑑 𝑓𝑜𝑟 𝐹, 𝐷 𝑎𝑛𝑑 𝑀 

F = 0 if premium frequency is annual and 1 if non-annual 

D = 0 if online, 1 if Agency and 2 if Bancassurance 

M = 0 if Direct debit and 1 if cheque 

(iii) 

The baseline hazard function applies to a policy for which the premium frequency is annual, 

the distribution channel is online and the method of premium payment is direct debit.  

(iv) 

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡

ℎ𝑛𝑜𝑛−𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑐ℎ𝑒𝑞𝑢𝑒
= 0.75    − − − (1) 

Also, 

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡

ℎ𝑛𝑜𝑛−𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑛𝑙𝑖𝑛𝑒,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡
= 1   − − − (2)     

Also, 

  

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑛𝑙𝑖𝑛𝑒,𝑐ℎ𝑒𝑞𝑢𝑒 =
3

4
∗ ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑏𝑎𝑛𝑐𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡 

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑛𝑙𝑖𝑛𝑒,𝑐ℎ𝑒𝑞𝑢𝑒

ℎ𝑛𝑜𝑛−𝑎𝑛𝑛𝑢𝑎𝑙,𝑏𝑎𝑛𝑐𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡
=

3

4
  − − − (3)     

In equation (1) 
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ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡

ℎ𝑛𝑜𝑛−𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑐ℎ𝑒𝑞𝑢𝑒
= 0.75     

ℎ0(𝑡) ∗ 𝑒𝛽𝐷

ℎ0(𝑡) ∗ 𝑒𝛽𝐹+ 𝛽𝐷+ 𝛽𝑀
= 0.75     

𝑒𝛽𝐷

𝑒𝛽𝐹+ 𝛽𝐷+ 𝛽𝑀
= 0.75     

𝑒−𝛽𝐹− 𝛽𝑀 = 0.75 

𝛽𝐹 + 𝛽𝑀 = 0.287682   − − − (4) 

In equation (2) 

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑎𝑔𝑒𝑛𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡

ℎ𝑛𝑜𝑛−𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑛𝑙𝑖𝑛𝑒,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡
= 1        

ℎ0(𝑡) ∗ 𝑒𝛽𝐷

ℎ0(𝑡) ∗ 𝑒𝛽𝐹
= 1     

𝑒𝛽𝐷

𝑒𝛽𝐹
= 1   

𝑒𝛽𝐷−𝛽𝐹 = 1 

𝛽𝐷 − 𝛽𝐹 = 0   − − − (5) 

In equation (3) 

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑛𝑙𝑖𝑛𝑒,𝑐ℎ𝑒𝑞𝑢𝑒

ℎ𝑎𝑛𝑛𝑢𝑎𝑙,𝑏𝑎𝑛𝑐𝑎𝑠𝑠𝑢𝑟𝑎𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑏𝑖𝑡
=

3

4
   

ℎ0(𝑡) ∗ 𝑒  𝛽𝑀

ℎ0(𝑡) ∗ 𝑒  2𝛽𝐷
= 0.75     

𝑒𝛽𝑀

𝑒2𝛽𝐷
= 0.75     

𝑒𝛽𝑀−2𝛽𝐷 = 0.75 

𝛽𝑀 − 2𝛽𝐷 = −0.287682   − − − (6) 

From (5) 

𝛽𝐷 = 𝛽𝐹 − − − (7)   

From (6) and (7) 

𝛽𝑀 − 2𝛽𝐹 = −0.287682   − − − (8) 

From (4) and (8) 

Subtracting (8) from (4) 
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3𝛽𝐹 = 0.575364 

𝛽𝐹 = 0.191788  − − − (9) 

From (7) 

 𝛽𝐷 = 0.191788 

From (4) and (9) 

𝛽𝑀 = 0.095894 
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11.  

 

(i) 

Kaplan-Meier estimate of survival function: 

t (weeks) 𝑠̂(𝑡) 
 

0 ≤ t < 1 1.0000 

1 ≤ t < 3 0.9167 

3 ≤ t < 6 0.7130 

6 ≤ t 0.4278 

 

We know, 

𝑠̂(𝑡) =  ∏(1 −  𝜆̂𝑗)

𝑡𝑗 ≤𝑡

  

For 0 ≤ t < 1 

𝑠̂(𝑡) = 1 

(1 −  
𝑑𝑗

𝑛𝑗
) = 1 

𝑑𝑗

𝑛𝑗
= 0 

𝑑𝑗 = 0 𝑎𝑛𝑑 𝑛𝑗 = 12  

For 1 ≤ t < 3 

𝑠̂(𝑡) = 0.9167 

(1 − 
𝑑1

𝑛1
) = 0.9167 

𝑑1

𝑛1
= 0 

𝑑1 = 0 𝑎𝑛𝑑 𝑛1 = 12  

For 3 ≤ t < 6 

𝑠̂(𝑡) = 0.7130 

(1 −  
𝑑3

𝑛3
) = 0.77779 

𝑑3

𝑛3
= 0.22221 
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Here, if we take n3 = 11, we get d3 = 2.44431 

If we take n3 = 10, we get d3 = 2.2221 

If we take n3 = 9, we get d3 = 2 

dj can’t take non-integer values 

𝑑3 = 2 𝑎𝑛𝑑 𝑛3 = 9  

 

For 6 ≤ t 

𝑠̂(𝑡) = 0.4278 

(1 −  
𝑑6

𝑛6
) = 0.6 

𝑑6

𝑛6
= 0.4 

Here, we can have maximum of 7 at risk insects. 

If we take n6 = 7, we get d6 = 2.8 

If we take n6 = 6, we get d6 = 2.4 

If we take n6 = 5, we get d6 = 2 

dj can’t take non-integer values 

𝑑6 = 2 𝑎𝑛𝑑 𝑛6 = 5  

 

The number of insects dying at duration 3 weeks is 2 and that at 6 weeks is also 2. 

 

(ii) 

Sine, we have a total of 12 insects at the start of the investigation and the total number of 

insects died are 5 

Therefore, number of insects whose history is censored = 12 – 5 = 7 
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12.  

(i) 

Gompertz law is a defined parametric survival model.  

Gompertz function is an exponential function and it is often a reasonable assumption for 

Middle Ages and older ages. The function increases exponentially with age. 

Gompertz law: 𝜆𝑥 = 𝐵 ∗ 𝑐𝑥 

(ii) 

 Substituting 𝐵 =  𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2 in Gompertz law 

𝜆𝑥 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2 ∗ 𝑐𝑥  

Here the hazard function of a life is divided in two parts:  𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2 which depends only 

on the covariates and 𝑐𝑥 which depends only on duration. 

Thus, the substitution leads to a proportional hazard model 

(iii) 

The baseline hazard applies to a life who is a female non-smoker 

(iv) 

𝜆𝑥 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2 ∗ 𝑐𝑥  

𝜆4 = 𝑒−4+0.65 ∗ (1.05)4 

𝜆4 = 0.04036 

 

(v) 

Hazard function for a cigarette smoker an any duration ‘x’ 

𝜆𝑥 = (𝑒𝛽0+𝛽1𝑥1+𝛽2) ∗ 𝑐𝑥 

Hazard function for a non-smoker at any time ‘t’ 

𝜆′𝑡 = (𝑒𝛽0+𝛽1𝑥1) ∗ 𝑐𝑡 

Assuming both the hazard functions are equal, 

𝜆𝑥 =  𝜆′
𝑡 

(𝑒𝛽0+𝛽1𝑥1+𝛽2) ∗ 𝑐𝑥 = (𝑒𝛽0+𝛽1𝑥1) ∗ 𝑐𝑡 

(𝑒𝛽2) ∗ 𝑐𝑥 = 𝑐𝑡 

(𝑒0.65) = 𝑐𝑡−𝑠 

1.915541 = 𝑐𝑡−𝑠 
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ln(1.915541) = (𝑡 − 𝑠) ln(1.05) 

𝑡 − 𝑠 =  13.32 

This proves that both the hazard functions will be constant when the difference between 

the age of a non-smoker and that of smoker is approximately 13.32 years. 
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13.  

(i) 

For age 56 

𝑢𝑥 =
𝑑𝑥

𝐸𝑥
𝑐 

Let dx be the number of deaths at age x nearest birthday 

Let Px,t = number of policies in-force for age x nearest birthday at duration t 

Let P’y,t = number of policies in-force for age y last birthday 

𝐸56
𝑐 =  ∫ 𝑃56,𝑡𝑑𝑡

2

0

 

∫ 𝑃56,𝑡𝑑𝑡
2

0

=
1

2
(𝑃56,0 + 𝑃56,1) +

1

2
(𝑃56,1 + 𝑃56,2) 

𝑃56,0 =
1

2
∗ (𝑃′

55,0 +  𝑃′
56,0) =

1

2
∗ (20100 + 20000) = 20050 

𝑃56,1 =
1

2
∗ (𝑃′

55,1 +  𝑃′
56,1) =

1

2
∗ (20500 + 21100) = 20800 

𝑃56,2 =
1

2
∗ (𝑃′

55,2 +  𝑃′
56,2) =

1

2
∗ (18500 + 20000) = 19250 

∫ 𝑃56,𝑡𝑑𝑡
2

0

=
1

2
(𝑃56,0 + 𝑃56,1) +

1

2
(𝑃56,1 + 𝑃56,2) 

∫ 𝑃56,𝑡𝑑𝑡
2

0

=
1

2
∗ 𝑃56,0 + 𝑃56,1 +

1

2
∗ 𝑃56,2 

𝐸56
𝑐 = 40450 

𝑢56 =
𝑑56

𝐸56
𝑐 =

1380

40450
= 0.0341162 

 

For age 57 

𝑢𝑥 =
𝑑𝑥

𝐸𝑥
𝑐 

Let dx be the number of deaths at age x nearest birthday 

Let Px,t = number of policies in-force for age x nearest birthday at duration t 

Let P’y,t = number of policies in-force for age y last birthday 
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𝐸57
𝑐 =  ∫ 𝑃57,𝑡𝑑𝑡

2

0

 

∫ 𝑃57,𝑡𝑑𝑡
2

0

=
1

2
(𝑃57,0 + 𝑃57,1) +

1

2
(𝑃57,1 + 𝑃57,2) 

𝑃57,0 =
1

2
∗ (𝑃′

56,0 +  𝑃′
57,0) =

1

2
∗ (20000 + 19700) = 19850 

𝑃57,1 =
1

2
∗ (𝑃′

56,1 +  𝑃′
57,1) =

1

2
∗ (21100 + 20700) = 20900 

𝑃57,2 =
1

2
∗ (𝑃′

56,2 +  𝑃′
57,2) =

1

2
∗ (20000 + 15000) = 17500 

∫ 𝑃57,𝑡𝑑𝑡
2

0

=
1

2
(𝑃57,0 + 𝑃57,1) +

1

2
(𝑃57,1 + 𝑃57,2) 

∫ 𝑃57,𝑡𝑑𝑡
2

0

=
1

2
∗ 𝑃57,0 + 𝑃57,1 +

1

2
∗ 𝑃57,2 

𝐸57
𝑐 = 39575 

𝑢57 =
𝑑57

𝐸57
𝑐 =

1420

39575
= 0.03588124 

(ii) 

𝑞
𝑥−

1
2

= (1 − 𝑒−𝑢𝑥 ) 

𝑞55.5 = (1 − 𝑒−𝑢56) =  (1 − 𝑒−0.0341162) = 0.033541  

And,  

𝑞56.5 = (1 − 𝑒−𝑢57) =  (1 − 𝑒−0.03588124) = 0.03524514  
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14.  

 

(i) 

Expression for the hazard function for the model specified 

ℎ𝑖(𝑡) =  ℎ0(𝑡) ∗ 𝑒(0.3∗𝑃1+0.5∗𝑃2−0.1∗𝑃3+0.3∗𝐺+0.2∗𝐿+0.7∗𝐴1+0.5∗𝐴2−0.4∗𝐴3) 

Where, 

ℎ𝑖(𝑡) 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑙𝑖𝑓𝑒 𝑎𝑓𝑡𝑒𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑎 𝑙𝑖𝑓𝑒 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 

ℎ0(𝑡) 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑙𝑖𝑓𝑒 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑡 

𝑃1 = 1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟, 

𝑃2 = 1, 𝑖𝑓 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟, 

𝑃3 = 1 𝑖𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟, 

𝐺 = 1 𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑚𝑎𝑙𝑒, 

𝐿 = 1 𝑖𝑓 𝑛𝑜𝑛 𝑚𝑒𝑡𝑟𝑜 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑚𝑒𝑡𝑟𝑜, 

𝐴1 = 1 𝑖𝑓 20 − 25 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟, 

𝐴2 = 1 𝑖𝑓 25 − 30 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟 

𝐴3 = 1 𝑖𝑓 35 − 40 𝑒𝑙𝑠𝑒 0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟  

𝑒(0.3∗𝑃1++0.5∗𝑃2−0.1∗𝑃3+0.3∗𝐺+0.2∗𝐿+0.7∗𝐴1+0.5∗𝐴2−0.14∗𝐴3)  

𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑎𝑧𝑟𝑎𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

(ii) 

The probability for staying single for next two years for a female social worker aged 37 living 

in Mumbai who has been looking to get married since last 1 year is 0.3 

∴ 0.3 =  𝑒− ∫ ℎ𝑠𝑜𝑐𝑖𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑓𝑒𝑚𝑎𝑙𝑒,𝑚𝑒𝑡𝑟𝑜,35−40(𝑡)𝑑𝑡
3

1  

0.3 =  𝑒− ∫ ℎ0(𝑡)∗𝑒(−0.1+0.3−0.4)𝑑𝑡
3

1  

0.3 =  𝑒−0.818731 ∫ ℎ0(𝑡)𝑑𝑡
3

1  

Taking ln 

ln(0.3) =  −0.818731 ∫ ℎ0(𝑡)𝑑𝑡
3

1

 

∫ ℎ0(𝑡)𝑑𝑡
3

1

= 1.4705353 

To find: The probability for staying single for next two years for a male aged 24 living in non-

metropolitan city and doing business given that he is looking for a partner for 1 year  
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∴ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑒− ∫ ℎ𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠,𝑚𝑎𝑙𝑒,𝑛𝑜𝑛−𝑚𝑒𝑡𝑟𝑜,20−25(𝑡)𝑑𝑡
3

1  

=  𝑒− ∫ ℎ0(𝑡)∗𝑒(0.5+0.2+0.7)𝑑𝑡
3

1  

=  𝑒−4.0552∗1.4705353 

∴ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.0025714 

The probability for staying single for next two years for a male aged 24 living in non-

metropolitan city and doing business given that he is looking for a partner for 1 year is 

0.0025714. 
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15.  

(i) 

Advantages of using central exposed to risk in actuarial investigations as opposed to initial 

exposed to risk are as follows: 

1] Central exposed to risk makes more practical sense as opposed to initial exposed to risk 

since, central exposed to risk takes into account the duration which is actually spent by the 

observation at risk. 

2] The central force of mortality (ux) is easier to interpret in the case of central exposed to 

risk rather than initial exposed to risk. 

(ii) 

Rita will attain exact age 30 last birthday on 1st October 2009. 

Central exposed to risk of Rita at age 30 last birthday (𝐸30
𝑐 ) = 1st October 2009 to 31st 

December 2009 i.e., 3 months 

Initial exposed to risk of Rita at age 30 last birthday = 1st October 2009 to 30th September 

2010 i.e., 1 year 

Sita will attain exact age 30 last birthday on 1st September 2011. 

Central exposed to risk of Sita at age 30 last birthday (𝐸30
𝑐 ) = 1st September 2011 to 31st 

August 2012 i.e., 1 year 

Initial exposed to risk of Sita at age 30 last birthday = 1st September 2011 to 31st August 

2012 i.e., 1 year 

Nita will attain exact age 30 last birthday on 1st December 2009. 

Central exposed to risk of Nita age 30 last birthday (𝐸30
𝑐 ) = 1st February 2010 to 31st October 

2010 i.e., 9 months 

Since, she was no more married, Nita is censored 

Thus, initial exposed to risk of Nita at age 30 last birthday is the same i.e., 9 months.  

Gita will attain exact age 30 last birthday on 1st April 2010. 

Since, she was married at age 31 last birthday, therefore, her contribution to central and 

initial exposed to risk is 0 

(iii) 

Total central exposed to risk 

=
3

12
+ 1 +

9

12
+ 0 = 2 𝑦𝑒𝑎𝑟𝑠 

Total initial exposed to risk  



27 | P a g e  
 

= 1 + 1 +
9

12
= 2.75 𝑦𝑒𝑎𝑟𝑠 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


