STATISTICAL RISK MODELLING

SEMESTER-3 PROJECT REPORT

- PALAK NAGDEV (419)

1)

After setting the working directory, we read the data using read.table (using "," and keeping header as "TRUE")

```
data=read.table('Graduation(1).csv' , header=TRUE , sep=',')
data$CRUDE<-data$DEATHS/data$ETR</pre>
```

Checking head and tail of the data:

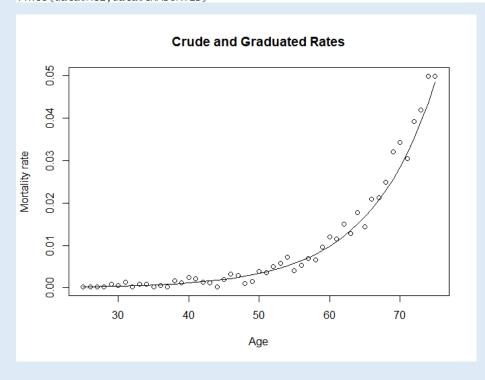
```
head(data)
tail(data)
```

```
> head(data)
  AGE
        ETR DEATHS
                           CRUDE GRADUATED EXPECTED
1 25 78500
                 24 0.0003057325 0.000238
                                               18.68 1.23
2 26 80425
                 24 0.0002984147
                                  0.000265
                                               21.31 0.58
3 27 81975
                 24 0.0002927722 0.000294
                                               24.10 -0.02
4 28 83725
               24 0.0002866527 0.000327
                                               27.38 -0.65
   29 84875
                72 0.0008483063 0.000364
                                               30.89
6 30 85075
                48 0.0005642081 0.000405
> tail(data)
AGE ETR I
46 70 129225
47 71 135
         ETR DEATHS
                           CRUDE GRADUATED EXPECTED
                 4428 0.03426582 0.028438 3674.90 12.42
                 3915 0.03037827 0.031627
                                            4075.93 -2.52
48 72 130075
                 5103 0.03923121 0.035174 4575.26
                                                      7.80
49 73 130475
                 5454 0.04180111 0.039119 5104.05 4.90
50 74 129550 6453 0.04981088 0.043507 5636.33 10.88
51 75 129400 6453 0.04986862 0.048386 6261.15 2.42
                6453 0.04981088 0.043507 5636.33 10.88
```

2)

Filling the graduated column using gompertz law, finding parameters B and C by using the functions "coef" and "as.numeric" and Using round function to rounding off the graduated column to 5 decimal palces.

```
B = 1.668727e-05
```

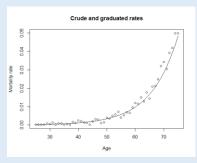

C = 1.112153e+00

```
gompertz1<-lm(log(data$CRUDE)~data$AGE)
gompertz1
coef(1)
B=exp(as.numeric(coef(gompertz1)))[1]
C=exp(as.numeric(coef(gompertz1)))[2]
c(B,C)
data$GRADUATED<-round(B*C^data$AGE,5)</pre>
```

Results:

Visualizing:

plot(data\$AGE,data\$CRUDE, xlab="Age",ylab="Mortality rate",main="Crude and Graduated Rates") lines(data\$AGE,data\$GRADUATED)


3) Checking for smoothness by applying 3rd differences to graduated and crude rates using the diff function.

3rd differences should be small in magnitude and progress regularly to check smoothness. In our data frame the 3rd differences of crude rates are much larger in magnitude and progresses erratically. However the magnitude of 3rd differences of the graduated rates are very small and progress regularly.

Therefore, the desired graduated rates computed by fitting Gompertz Law are smooth.

```
\label{lem:diff_new} \begin{split} & \text{diff\_new} < -\text{function}(v) \vee [-1] - \vee [-\text{length}(v)] \\ & \text{diff\_crude=round}(\text{diff\_new}(\text{diff\_new}(\text{data\$CRUDE}))) * 10^6, 0) \\ & \text{diff\_grad=round}(\text{diff\_new}(\text{diff\_new}(\text{data\$GRADUATED}))) * 10^6, 0) \\ & \text{plot}(\text{data\$AGE}, \text{data\$CRUDE}, \ xlab="Age", ylab="Mortality rate", main="Crude and graduated rates") \\ & \text{lines}(\text{data\$AGE}, \text{data\$GRADUATED}) \\ & \text{cbind}(\text{data\$AGE}[\text{data\$AGE} < -72], \text{diff\_crude}, \text{diff\_grad}) \end{split}
```

Visualizing:

<pre>> cbind(data\$AGE[data\$AGE<=72],diff_crude,diff_grad)</pre>							
diff_crude diff_grad							
[1,] 25	-2	0					
[2,] 26	568	-20					
[3,] 27	-1414	20					
[4,] 28	1973	0					
[5,] 29	-3099	-10					
[6,] 30	3648	10					
[7,] 31	-2233	-10					
[8,] 32	17	10					
[9,] 33	1342	0					
[10,] 34	-1322	-10					
[11,] 35	2241	20					
[12,] 36	-3676	-20					
[13,] 37	3676	20					
[14,] 38	-3183	-10					
[15,] 39	947	10					
[16,] 40	1004	-10					
[17,] 41	-1142	10					
[18,] 42	3333	0					
[19,] 43	-3124	10					
[20,] 44	-1295	-10					
[21,] 45	398	0					
[22,] 46	3528	20					
[23,] 47	-274	-10					
[24,] 48	-4533	10					
[25,] 49	4447	10					
[26,] 50	-2588	-10					
[27,] 51	1433	10					
[28,] 52	-5286	10					
[29,] 53	9026	10					
[30,] 54	-4183	0					

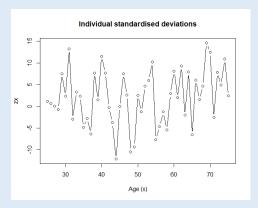
[31,]	55	-1951	10
[32,]	56	4992	10
[33,]	57	-3863	10
[34,]	58	-2369	10
[35,]	59	6962	20
[36,]	60	-9542	0
[37,]	61	12421	30
[38,]	62	-14898	0
[39,]	63	17650	40
[40,]	64	-15583	0
[41,]	65	9139	40
[42,]	66	267	20
[43,]	67	-8292	30
[44,]	68	-1303	30
[45,]	69	18882	30
[46,]	70	-19024	60
[47,]	71	11723	30
[48,]	72	-13392	50

4)

Calculating expected rates and Zx and rounding both the numbers to 3 decimal places. Conducting a chi-square test using chisq.test function.

Interpretation:

→ Graduation is not Okay


H0: Graduation is Okay

H1: Graduation is not Okay

Since the p-value is greater than 0.05, H0 is rejected.

```
data$EXPECTED<-round(data$GRADUATED*data$ETR,3)
data$ZX<-round((data$DEATHS-data$EXPECTED)/sqrt(data$EXPECTED),3)
plot(data$AGE,data$ZX,type="b",Xlab="Age (x)", ylab="zx",main="Individual standardised deviations")
data$prob = data$EXPECTED/sum(data$EXPECTED)
c=chisq.test(data$DEATHS,data$prob,rescale.p = TRUE)
c$parameter
c$p.value
c$statistic
sum(data$ZX^2)</pre>
```

Visualizing:

5)

a)

STANDARDISED DEVIATIONS TEST

Creating intervals of 1 from -3 to +3 under binning_var 1. Creating a testing table and a probability table using prop.table function.

Finally, creating a new dataframe with observed and expected probability in the columns.

Conducting a χ^2 test using chisq.test function.

OVERALL SHAPE - The data shows that it is negatively skewed and has more values on the tail.

<u>ABSOLUTE DEVIATIONS</u> – The data is over graduated and shows existence of duplicates as the absolute deviations are too big (shown by proved by the fact that there are less than 50% values lying in the (-2/3 to 2/3) bin)

<u>OUTLIERS</u> – Too many outliers are present as close to 20% of the data lies in the (-infinity to -3) bin and 40% of the data lies in the (3 to Infinity) bin. Showing that the data has approximately 60% outliers.

<u>SYMMETRY</u> – The number of positive and the number of negative deviations are not close to 50% rather there are only 20 negative and 31 positive deviations. This shows that observed mortality rates do not conform to the model with the rates assumed in the graduation. The data shows nature of discrepancy.

```
binning_var1 = c(-Inf, -3, -2, -1, 0, 1, 2, 3, Inf)
testing_table1 = data.frame(data$ZX, bin=cut(data$ZX, binning_var1, include.lowest=TRUE))
prop. table(table(testing_table15bin))
standdev_test = data.frame(Bins = levels(unique(testing_table15bin)), Expected = c(0, 0.02, 0.14, 0.34, 0.34, 0.14, 0.02, 0), Observed = round(as.r standdev_test = standdev_test %% mutate(Expected = Expected * 51, Observed = Observed * 51)

> prop. table(table(testing_table15bin))
[-Inf,-3] (-3,-2] (-2,-1] (-1,0] (0,1] (1,2]
0.19607843 0.07843137 0.03921569 0.05882353 0.03921569 0.07843137
(2,3] (3, Inf]
0.11764706 0.39215686

Chi-squared test for given probabilities

data: standdev_test$Expected
X-squared = 59.65, df = 7, p-value = 1.773e-10
```

H0: Graduation is Okay

H1: Graduation is not Okay

 χ^2 test gives a p.value of less than 0.05 and as mentioned above as the p.value was very low we have insufficient evidence to reject H0 and therefore the Graduation is OK.

```
data$signs = ifelse(data$GRADUATED>data$CRUDE,1,0)
head(data)
tail(data)
sum(data$signs)
p=2*pbinom(20,51,0.5)
p
```

Signs test checks for defect (b) of χ^2 test.

H0: Data is biased

H1: Data is not biased

As the p.value = 0.16 which is greater than 0.05 we have insufficient evidence to reject H0 . Hence data is not biased.

CUMULATIVE DEVIATIONS TEST

```
(sum(data$DEATHS)-sum(data$EXPECTED))/(sqrt(sum(data$EXPECTED)))
#5)d
z1=data$ZX[1:length(data$ZX)-1]
z2=data$ZX[2:length(data$ZX)]
a=cor(z1,z2)
a
a*sqrt(51)
```

It checks cumulations of positive and negative groups.

Test statistic = 18.831

H0: Graduation rates are OK

H1: Graduation rates are too low

As test statistic is greater than 1.96 we have sufficient evidence to reject H0 and conclude that Graduation rates are too low.

```
"z1=data$ZX[1:length(data$ZX)-1]
z2=data$ZX[2:length(data$ZX)]
a=cor(z1,z2)
a
a*sqrt(51)"
```

SERIAL CORRELATIONS TEST

It detects clumping of signs of deviations

As $a= r_j = 0.1477$ we can conclude that Z_x has similar values.

H0: No grouping of signs

H1: Grouping of signs

As test statistic is 1.05 which is less than 1.649 we have insufficient evidence to reject H0. Therefore there is no evidence of grouping of signs .