SRM-2 ASSIGNMENT

i) Writing the state space in the order {Bid (B), Offer (O)}, the generator matrix is:

B(-A A

0( M —MJ'
i) The holding times are exponentially distributed with parameter A in state B, and p in state O.
ii)

2 BB = PP, PO

0 _Bo B 0
Erps =;L'rPsB _p'rPsB-

iv) We have a two-state model so:

BB BO
B+ B =1.

Substituting:

: rPsBB =_}‘-rPsBB+P-(1_rPsBB):

o

~

0 BB _ .
E[exp((k +)it)., P :| =p.exp((A+p)t);

and hence

exp((A+ p)r).,PSBB = )——“—.exp((k + 1)) + constant.
Tl

"

Since the process is in state Bid at time s (i.e. 7 =0),

. A
the constant is 2
n+A

and thus ,PSBB =—F 4

4 —(A+p)t).
Nt hER exp(—(A+p)t)

)



iii)

0.1

0.2 0.4

0.1 0.1

% P, (t)=—0.3P,,(t)+0.1P,,(t)+0.3P,(t)

%  5(t)=0.2P,,(t)-0.5P,(t)+0.1P,.(t)

diPAc(t) =0.1P,,(t)+0.4P,(t)—-0.4P,(t)
t

EITHER

To stay in state 4 the equation reduces to:

d
EP""(” =-0.3P_ ()

which has solution
P (t)=exp(-0.3t)

So for =2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 +0.2)*2 =0.6

-0.6 0
0.6
P(P0i(0.6)=0)= eT
= e¢ =0.5488

The only paths under which the third jump is into state C are BAC, CAC
and CBC.

The probabilities of each jump are given by the ratio of the transition rates.
So, the probabilities for each path are:



211 2

BAC==._-"=
353 45
131 1

CIe==— =
3'4°3 12
114 1

CBC= =—.—.—=—
34’5 15

Sum = 7/36 =0.194.

i)
1. Never 2. Taking 3. No Longer
Taken P Nimble Taking
Nimble Nimble
4. Death by S. Death
Heart Disease other
ii) Using the Markov assumption

OR
the Chapman Kolmogorov equation is

34 _ 31 14 32 24 33 34 34 44 35 54
dt+t Px =t Px dtPx+t Yt Px arPxs+t Yt Py dtPy+t Yt Px atPx+t Yt Py datPx+t -

. 54 31
Since dtPx+t =t Px =0

34 32 24 33 34 34 44
dt+t Px =t Px dtPx+t Yt Px dtPx+t Yt Px dtPx+t-

44
it =1

Given that ; p
And assuming that, for small dt

d1P¥+r = qud’ +o(dr) i#]

where lim Ldt)=
dt—0 dt

0 ’
then substituting, we have

34 3224 33 34 34
drst Px =t Py My dt +; py iy dt +, py +o(dr)

34 34 32, .24 33 .34
sothat g, py" = Py = Py Mys,dlt +; Py Uy, di+o(dr)

1) The mean is equal to the parameter, so there are 3 calls per hour.



ii) The process is memoryless so the fact that Fred has not had a call for
15 minutes is irrelevant.
Expected time until next call is 20 minutes.
iii)
This is the probability of zero calls in time 0.5 hours.

Using pj(1)=e—)"(kr)j/j!
OR

-15 0
> 15
Since p((0.5) = % .

P0(0.5)=¢"1° =0.2231 .

iv) The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.
Per hour this is 3 calls times 7 minutes = 21 minutes.
So, the probability that the phone is engaged is 21/60 = 0.35.

i) EITHER
Using the Markov assumption,
OR
The Chapman Kolmogorov equation is



Pry (.1 +dt) = Py (X, 1) Dy (.1 + aY)
+Ppu (XD P, (1.1 +d) + pyp (X, D) pp. (2.1 +dt)

But ppy(t.1+dt) =0 or other explanation why path through D can be
1gnored

So:
Py (X1 +d1) = Py (X, 1) Py (1.1 +dt) + P (X.1) Py, (2.2 + dE)
Assuming that, for small dr

Pjj (t.t+dt)= Ay (1)dt +o(dt) i#j

pii(t.t+dt) =1+1;;(t)dt +o(dt)

OR
pi(t.t+dt)=1= k;()dt +o(dt)

J#

. o(dt) =

where the /s are the instantaneous transition rates and ;o 4y 0.

then substituting, we have
puy(x.t+dt) = pyy (x.1)A=o(t)dt =u(r)dt) + pys (x.0)p(r.C; ) +o(dt)
so that

P (x.1+dt) = ppy (x.1) = pyy (x.1)(=0(8) = ()
+pys (x.0)p(t.C,)dt + o(dr)

and hence

d . pga(x.t+dt)=pup(x.1)
g P (.0 = b, dr

= pgp (x.0)(=o() = (1) + pgs (x.0p(t.C;)

The equation simplifies when considering py(#) to

dﬁ p_(0.t)=—(a(t)+u@)p_ (1)
t*m e



1 d d
— 0,1)=- t))=—In t) .
p_(o.r)drp—( ) =—(o(t)+ u(t)) 7 p_ (1)
HH

Integrate both sides:

t

[lnpzz0.0] = [ ~(0(s)+n(s)ds
5=0

as pﬁ(O)=1

I
pH—H(O.r) =exp—( I (o(s)+u(s))ds)
5=0

All three processes have a discrete state space.
A Markov Chain and Markov Jump Chain both operate in discrete time but a Markov jump
Process operates in continuous time.
All have the Markov property which is
EITHER that the future development of the process can be predicted from its present state alone,
without reference to its past history.
OR that
PiX,ed| X, =x,, X, =x,,... X, =x,.X,=x]=P[X,e 4 | X,=x]

2 n n

for all times s, <s, <...<s, <s <{,all states x,, x,, ..., x,,, x in S and all subsets 4 of S.

o <
EITHER if a Markov Jump Process X is examined only at the times of its transitions, the resulting
process is called the Jump Chain associated with X.

OR for a Jump Process X the Jump Chain X shows the states visited by X, taking an identical path
through the state space.

The Jump Chain obeys the Markov Property and behaves as a Markov Chain except when the Jump
Chain encounters an absorbing state. From that time, it makes no further transitions, implying that time
stops for the Jump Chain.

The Jump Chain associated with X takes the same path through the state space as X does. However,
questions about the times taken to visit a state are likely to have different answers for X and for the
Jump Chain associated with X.

The Markov Jump Chain and the Markov Chain are expressed in terms of probabilities

whereas the Markov Jump Process is expressed in terms of rates.

The Markov Chain can have loops in each state, the Markov Jump process cannot and the

Markov Jump Chain only has loops on absorbing states.

i) The maximum likelihood estimates of the transition intensity from state i to state j is the
number of transitions from state i to state j divided by the total waiting time in state i.
To estimate the transition intensities exactly we therefore need
the total time spent in each state
OR
entry and exit times for each individual for each state,
and the total number of transitions of each type made.

Define p,(s,f) to be the probability of being in state Active at time s+ if Active at
time s.
Then EITHER



iii)

d
gp.u(saf)=-l’.4.4(&f)ll

d
gp_g(s.f) =p(.0u,

OR

%P(SJ) =p(s.)M

where M = (—Ou !;] in order Active, Theft,

OR
Integrated forward equations:

1
P44(s,0)= exp(—J."q udll)

t
Dar(s.t)= .[1 " D.yy(s.u)p1du .

Measure from time zero i.e., s = 0 and drop s from notation.
EITHER

%an(p_“ ) =-u,

hence p 4 () = exp(—ut+C).
As p4(0)=1,C=0,s0

P .44(t) = exp(—1r)
A claim occurs with cost £C if moves to state “Theft Claim”.

Hence the expected cost is C (1 exp(-uT))
OR

Solving for p ,r, we have

% Par(®)=p 1 (Ou=(1-p 7 () (as the model has only two states).

Using an integrating factor, we can write



1)
ii)

2 {exp(u)p7(0) = exp(n).

exp(Uf)p 47 () = exp(ur) -1,

P47 () =1—exp(-11) ,
and hence the expected costis C(1—exp(—u7)).

OR

Solving the integrated forward equation
T T
P, (T)= L=0exp(—ps)1ds =[~exp(us)], =1-exp(-u7),

and hence the expected costis C(1—exp(—u7)).

u

Active Theft

policy claim
A

We now have % P ==p o OWQ+A).
S0 p,44() = exp(~(+0)1).

We want 2 p 17 (1)= P (R =H XD+ 2)0).

T

: : - _ M
Solving this produces p ,,(¢) = exp(-(u+ A1) =——(1—exp(-(U+A)T)) .
e o RHA

C(1-exp(—(U+M)7)).

So claims become

L+A

{0,1,2,3,4....}



iii)

v)

vi)

ii)
iii)
iv)

A

A i A
u u u u

il
Generator matrix
Lives 0 1 2 3 4

0 0 0 0 0

n —(u+i) A 0 0

0 il —(u+2) A 0

0 0 1l —(u+2) A

0 0 0 Tl —(u+2)
EITHER

If a Markov jump process Xt is examined only at the times of transition, the
resulting process is called the jump chain associated with Xt

OR

A jump chain is each distinct state visited in the order visited where the time
set is the times when states are moved between.

Lives 0 1 2 3 4
1 0 0 0 0
n/(u+2) 0 A (u+2) 0 0
0 pn/(u+2) 0 Al (u+A) 0
0 0 n/(u+a) 0 Al(u+2)
0 0 0 n/(u+2) 0
etc.

etc.




— P (t) = -2t x P(f)
= i[lnp—(r)] = -2t
dt 44

=5 lnPA—A(s) = —s” + constant

We know PA—A(O) =1, hence constant =0

A
— -5~
Hence, P—AA(s) =exp
ii) P(in first visit to B at time T in state A at t = 0)
T B .
= Io P(remains in A to time s)
x P(transition to B in time s, s + ds)

x P(remains in B to time T) ds

= I PA—A(S) X 28% PEE(S’T)dS
5=0
Using the result from part (i) and the similar result for Pgz with boundary
condition Pgg(s, s) = 1, this gives us:
L _a 2,2
= (e x2sxe T *ds

5=0

T
-7
= | 2sxe " ds
5s=0

"
=T 2
=eT %=

ii)
a) The sketch should be shaped like:

Probability

Time

b) Commentary:
o Initially probability increases from 0 at T = 0, and accelerates as the transition

rate from A to B increases.



e However, as transitions increase, it becomes more likely that the process has
already visited state B and jumped back to A. Therefore, the probability of being
in the first visit to B tends (exponentially) to zero.

c) Differentiate to find turning point:

dl _p B D
Zle x? |=2txe -2 xe!
dt
set derivative equal to zero

Y

e x2tx(1-12)=0

implies 7 =1 for a positive solution
and, from above analysis, this is clearly a maximum.

10.
i) Let Nt denote the number of claims up to time t. Since the Poisson process has stationary
increments, we may take t = 0, so that the required conditional distribution is

P(To S.\'. NS =l)
PN, =1)

P(Iy<y|N,=1)=

P( N,=1, N,-N,=0)
P(N, =1)

But N, — N, is independent of V,,
and has the same distribution as N_,..

Thus the right hand side above equals

(L\'e_;“-" )e—).(s—_r) -
—As -

N

“ |-

Ase

which is the cdf of the uniform distribution on [0, s].
i) Since holding times are independent, each having an exponential distribution, their joint
density is

n_=A(fy+tr+..+1y)
Ae 1{11.!3.....t,,>0}.

iii) We have, as in part (i),
P(N; =k, N,=n)

P(N_=k|N,=n)=
(N; =kIN, =n) P(N, =n)

P( N;=k, N,-N;=n-k)
P(N, =n)
Using again that the Poisson process has stationary and independent

increments, and that the number of claims in an interval [0, t] is Poisson ( t),
we derive from above that




e—b ()\,S)k e—l(l—s) }\‘n—k (t- S)n—k

k! (n-k)!

n!

- e—“)\,"Sk (- S)"—k !
k!(n — k)! e'“k"t"

o .sk (t-s)"*
k'(n-k)! tknk

MBI

which is binomial with parameters » and s/t.




