```
"Q1"
```

```
set.seed(10221)

X = rlnorm(1000,5,2.5)

a = quantile(X,probs = c(0.25,0.50,0.75))

b = qlnorm(p = c(0.25,0.50,0.75),5,2.5)

diff = a - b

print(diff)
```

```
> print(diff)
25% 50% 75%
3.593005 10.952475 49.482344
```

Interpretation = there is very less difference between empirical quartiles and true quartiles

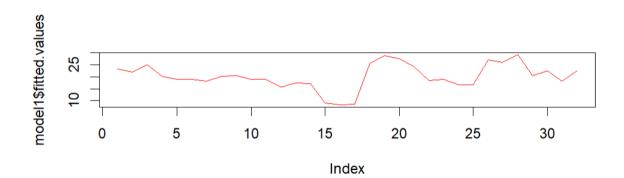
```
"Q2"

data = mtcars

model0 = lm(mpg ~ 1,data = data)

model1 = update(model0,.~. +wt)

model2 = update(model1 ,.~. + disp)


plot(model1$fitted.values,type = "l",col ="red")

summary(model0)

summary(model1)

summary(model2)

anova(model1,model2)
```


COMMENTS = "modelo there was no r sq as model without any independent variable model 1 r sq = 0.7528 which states it's a significant model , adj r sq = 0.7446 model 2 r sq = 0.7809 that's not a significant increase at 5% los according to anova(model 1, model 2) "

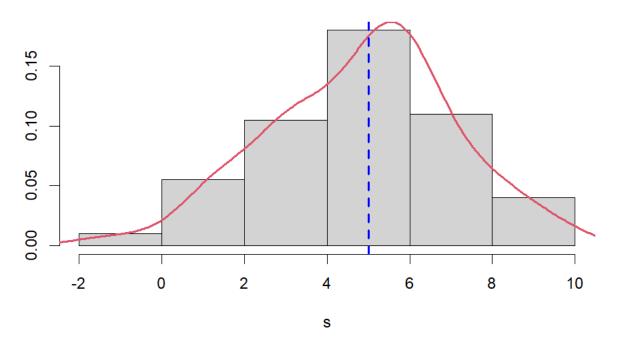
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446 F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

Multiple R-squared: 0.7809, Adjusted R-squared: 0.7658

```
"Q3"

set.seed(2919)

s = rnorm(100,5,2.5)


x = density(s)

hist(s, freq = FALSE)

lines(x$x, x$y, col = 2, lwd = 2)

abline(v = 5,col = "blue", lwd = 2, lty = 2)
```

Histogram of s

"We can reduce difference between both by increasing the sample size as larger the sample size more approximately it follows normal distribution"

```
Pearson's Chi-squared test
data: m
K-squared = 375789, df = 6, p-value < 2.2e-16
```

"As p value is less than 1% therefore this distribution comes from poisson distribution"

```
"Q5"
```

"a"

library(MASS)

data = Animals

cor(data)

```
body brain
body 1.000000000 -0.005341163
brain -0.005341163 1.000000000
```

Comment = "there is a weak negative correlation"

"b"

cor(log(data))

```
body brain
body 1.0000000 0.7794935
brain 0.7794935 1.0000000
```

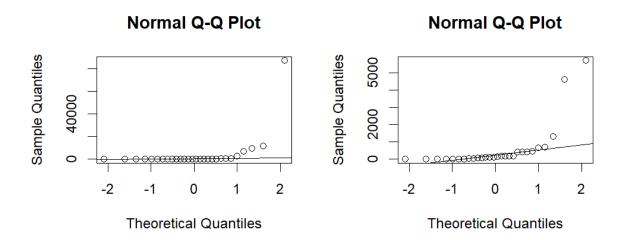
Comment = "There is a strong positive correlation"

"d"

t.test(data\$body,data\$brain,alternative = "greater")

Comment = "the mean Body weight is greater than mean Brain weight."

"e"


par(mfrow = c(1,2))

qqnorm(data\$body)

qqnorm(data\$brain)

qqline(data\$body)

qqline(data\$brain)

Comment = "as we can see that qqline is almost covering all the points of body weight therefore we can conclude that body weight follows normal more than brain weight"

```
"Q6"

m = matrix(c(40,20,10,30,35,15,30,45,25),nrow = 3,byrow = T)

colnames(m) = c("A","B","C")

rownames(m) = c("SSC","GRADUATE","PG")

cor(m)
```

```
A B C
A 1.0000000 -0.9176629 -0.7559289
B -0.9176629 1.0000000 0.9538210
C -0.7559289 0.9538210 1.0000000
```

Comment = "we can see it is dependent on each other"

```
"Q7"

spam = read.csv(file.choose())

spam$Spam = as.factor(spam$Spam)

model = glm(Spam ~ .,data = spam,family = binomial())

summary(model)
```

```
Deviance Residuals:
    Min
              10
                    Median
                                  3Q
                                          Max
 5.3006 -0.6469
                    0.0000
                             0.7918
                                       3.9864
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              0.332279
                          0.050606
                                      6.566 5.17e-11 ***
             -0.164586
                          0.018233
                                     -9.027
                                             < 2e-16 ***
the
to
                          0.019595
                                     -1.255 0.209300
             -0.024602
                                      9.030
and
              0.219322
                          0.024289
                                             < 2e-16 ***
of
                          0.027009
                                      6.728 1.72e-11 ***
              0.181715
                                      6.005 1.91e-09 ***
              0.162628
                          0.027082
a
in.
                          0.030434
              0.056937
                                      1.871 0.061369 .
for.
             -0.101996
                          0.028459
                                     -3.584 0.000338 ***
you
              0.173672
                          0.023386
                                      7.426 1.12e-13 ***
is
             -0.074714
                          0.033662
                                     -2.220 0.026449 *
             -0.393930
                          0.037303 -10.560 < 2e-16 ***
on
this
              0.213083
                          0.035686
                                      5.971 2.36e-09 ***
                          0.040352
                                     -3.363 0.000772 ***
that
             -0.135693
             -0.003784
                          0.041093
                                    -0.092 0.926640
            -21.098030 243.275658
                                     -0.087 0.930890
enron
             -0.182656
                          0.046072
                                     -3.965 7.35e-05 ***
be
             -0.020856
                          0.048726
                                     -0.428 0.668628
with
             -0.170753
                          0.025139
                                     -6.792 1.10e-11 ***
vour
              0.522094
                          0.038343
                                     13.616
                                             < 2e-16 ***
             -0.293822
                          0.048427
                                     -6.067 1.30e-09 ***
have
                                     1.517 0.129148
              0.068130
                          0.044897
as
will
                                     -7.414 1.23e-13 ***
             -0.332093
                          0.044793
it
              0.169437
                          0.047200
                                      3.590 0.000331 ***
we
             -0.144296
                          0.037909
                                     -3.806 0.000141 ***
are
              0.067673
                          0.046464
                                      1.456 0.145262
Sianif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```