Financial Engineering

Assignment 1

Unit 1 & 2

1.

(i) Arbitrage opportunity is a situation where we can make a certain profit without any risk.

Arbitrage opportunity also means that we start at time 0, with portfolio that has net value of 0, i.e. a zero-cost portfolio.

At some future time, T,

Probability of loss is zero and probability we make a strictly positive profit is greater than zero.

- (ii) Law of one price states that "Assuming principal of no arbitrage, two securities or combinations of securities that gives exact same payments must have the same price."
- (iii) Pt: Price of 3 month European put

S0 =125

K = 120

c = 30

Rf = 5% pa

(a) If dividends are paid continuously at rate of q=15%

Using put call parity,

ct +
$$Ke^{-r(T-t)}$$
 = pt + $Ste^{-q(T-t)}$
30 + $120e^{-0.05 * 3/12}$ = pt + $125 e^{-0.15 * 3/12}$
pt = 28.11

(b) If the price of put option is Rs. 23 then, it is cheaper.

To make profit, we buy cheap and sell the expensive. So, we will

buy put option @ Rs.23

Sell call option @ Rs.30

Buy one share @125

Borrow(sell) cash 118

So, in 3 months' time, cash to be re-payed would be $118*e^0.05*3/12 = 119.48$ We will receive dividends on share, d

So, if share price is above 120, call option would be exercised by the holder and we would let our put option expire worthless.

Our profit payoff would be:

120 - 119.48 + d = 0.52 + d

If share price is below 120, we would exercise our put option, and the holder of call option would let it go worthless. Our profit payoff would be:

$$120 - 119.78 + d = 0.52 + d$$

In either case, we generate positive profit at outset of 0.52

2. $dXt = \alpha \mu(T-t) dt + \sigma \sqrt{(T-t)} dZt$ $f(x,t) = e^{(m(T-t)-x)}$; where m is a differentiable equation find $\partial m/\partial t$ if f(x,t) is a martingale

Ans.
$$\frac{\partial F}{\partial t} = e^{(m(T-t) - Xt)} * \frac{\partial m}{\partial t} = f(\frac{\partial m}{\partial t}(T-t) + m)$$

$$\frac{\partial F}{\partial dXt} = e^{(m(T-t) - Xt)} * (-1) = -f$$

$$\frac{\partial F^2}{\partial t^2 dXt} = e^{(m(T-t) - Xt)} = f$$

Therefore,

By ito's lemma,

$$\begin{split} &\text{df}(\textbf{x},\textbf{t}) = \text{dXt}\,\frac{\partial F}{\partial t} + \text{dt}\,\frac{\partial F}{\partial dXt} + \frac{(dXt)^2}{2\,!}\,\frac{\partial F^2}{\partial^2 dXt} \\ &\text{df} = (\alpha\mu(\textbf{T-t})\,\,\text{dt} + \sigma\,\,\sqrt{(\textbf{T-t})}\,\,\text{dZt}\,)(\textbf{-f}) + \text{dt}\,\,\text{f}(\frac{\partial m}{\partial t}(\textbf{T-t}) + \textbf{m}) + \frac{\sigma^2(T-t)dt}{2}\,\,\text{f} \\ &\text{df} = \text{dt}(\textbf{-f}\,\,\alpha\mu(\textbf{T-t}) + \textbf{f}\,\,(\frac{\partial m}{\partial t}(\textbf{T-t}) + \textbf{m}) + \frac{\sigma^2(T-t)dt}{2}\,\,\text{f})\,\textbf{-f}\,\,\sigma\,\,\sqrt{(\textbf{T-t})}\,\,\text{dZt} \\ &\text{Since}\,\,\text{f}(\textbf{x},\textbf{t})\,\,\text{is a martingale, it means that it has zero drift.} \\ &\text{i.e.}\,\,\,\text{dt}(\textbf{-f}\,\,\alpha\mu(\textbf{T-t}) + \textbf{f}\,\frac{\partial m}{\partial t}(\textbf{T}-\textbf{t}) \,\,+\,\,\text{m} + \frac{\sigma^2(T-t)dt}{2}\,\,\text{f}) = 0 \end{split}$$

i.e.
$$dt(-t) + t \frac{\partial m}{\partial t}(1-t) + m + \frac{\sigma^2(T-t)dt}{2}) = 0$$

$$\frac{\partial m}{\partial t} = -(\alpha\mu(T-t) + \frac{\sigma^2(T-t)dt}{2} + m) * \frac{1}{(T-t)}$$

- 3. $dXt/Xt = 0.25 dt + \sigma dWt$ $dXt = Xt(0.25dt + \sigma dWt)$ Yt = f(t,Xt) $Where f(t,Xt) = e^{-t}x^{2}$
 - (i) Expression for dYt: By ito's lemma.

$$\begin{aligned} & \text{dYt} = \text{dXt*} \ e^{-t} 2Xt \ + \text{dt*} \ e^{-t} x^2 * (-1) + \frac{(dXt)^2}{2} * 2e^{-t} \\ & \text{dYt} = \text{dXt*} \ e^{-t} 2Xt \ - \text{dt*} \ e^{-t} x^2 * + \ \sigma^2 \ dt \ Xt^2 * e^{-t} \\ & \text{dYt} = 2e^{-t} \ Xt^2 \frac{dXt}{Xt} - \text{Yt} \ dt + \text{Yt} \ dt \ \sigma^2 \\ & \text{dYt} = 2\text{Yt} \ (0.25 \ dt + \sigma dWt) - \text{Yt} \ dt + \text{Yt} \ dt \ \sigma^2 \\ & \frac{dYt}{Yt} = (0.5 \ -1 + \sigma^2 \) dt + 2\sigma dWt \end{aligned}$$

$$dYt = (\sigma^2 - 0.5)dt Yt + 2\sigma dWt Yt$$

(ii) The process is martingale when the drift would be zero, i.e.

$$\sigma^2 - 0.5 = 0$$
 $\sigma^2 = 0.5$

4. American call option

T= 10 months

$$Rf = 9.5\% pa$$

$$K = 350$$

Dividend = 10 after three months from now and again after six months from now.

If option is exercised before prior to dividend date, then the payoff is (St-K).

After dividend,

Doubt

5. St follows geometric Brownian motion

$$St = Soe^{(\mu - \sigma^2/2)T + \sigma Xt}$$

Therefore, ln(st) follows Normal distribution with [ln(So) + $(\mu - \sigma^2/2)T$, $\sigma^2 t$)

$$E(St) = 16\%$$

$$Sd(St) = 35\%$$

$$S0 = 254$$

In this case, mean = 5.5867

Std dev = 0.24748

Probability that European call with k=258 in 6 months will be exercised

Call will be exercised if the share price is above the strike price

Therefore

$$P(St > 258) = P(In(St) > In(258)) = P(In(St) > 5.553)$$

$$\mathsf{P}\big(\frac{ln(St) - 5.5867}{0.24748} > \frac{5.553 - 5.5867}{0.24748}\big)$$

$$P(z > -0.136) = P(z < 0.136) = 0.55172$$

Probability that European put with same exercise price ad maturity will be exercised: European put will only be exercised if share price is less than strike price

$$P(St<258) = 1 - 0.55172 = 0.4482$$

6. GBM

(i) Show that
$$\frac{dSt}{St} = xdBt + ydt$$

 $Log(\frac{St}{So}) = \mu t + \sigma Bt$
 $St = So e^{\mu t + \sigma Bt}$

$$\frac{\partial G}{\partial t} = \mu^* \operatorname{So} e^{\mu t + \sigma \operatorname{Bt}} = \mu \operatorname{St}$$

$$\frac{\partial G}{\partial St} = \sigma^* \operatorname{So} e^{\mu t + \sigma \operatorname{Bt}} = \sigma \operatorname{St}$$

$$\frac{\partial G^2}{\partial^2 t} = \sigma^{2*} \operatorname{So} e^{\mu t + \sigma \operatorname{Bt}} = \sigma^2 \operatorname{St}$$

By ito's lemma,

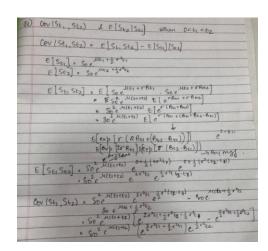
dSt = dBt
$$\sigma$$
 St + dt μ St + $\frac{(dBt)^2}{2} \sigma^2$ St
dSt = dBt σ St + dt μ St + $\frac{dt}{2} \sigma^2$ St
 $\frac{dSt}{St}$ = dBt σ + dt(μ + $\frac{\sigma^2}{2}$)
Hence, $\frac{dSt}{St}$ = $xdBt$ + ydt
Where x = σ and y is (μ + $\frac{\sigma^2}{2}$)

(ii)
$$\begin{aligned} & \mathsf{E}[\mathsf{St}] = \mathsf{E}[\;\mathsf{So}\;e^{\,\mu\mathsf{t}\;+\sigma\;\mathsf{Bt}}\;\;] = \mathsf{So}\;e^{\,\mu\mathsf{t}}\;\;\mathsf{E}[e^{\,\sigma Bt}] \\ & \mathsf{Bt}\;\mathsf{follows}\;\mathsf{N}(\mathsf{0},\mathsf{t}) \\ & \mathsf{By}\;\mathsf{mgf} \\ & \mathsf{E}[e^{\,\sigma Bt}] = e^{\,\frac{\sigma^2t}{2}} \\ & \mathsf{E}[\mathsf{St}] = \mathsf{So}\;e^{\,\mu\mathsf{t}\;+\frac{\sigma^2t}{2}} \end{aligned}$$

$$\begin{aligned} & \text{V[St]} = \text{E[S^2t]} - (\text{E[St]})^2 \\ & \text{V[St]} = \text{So^2} \ e^{2\mu t} \quad \text{E[}e^{2\sigma Bt} \text{]} - \text{So^2} \ e^{2\mu t + \sigma^2 t} \\ & \text{By mgf,} \\ & \text{E[}e^{2\sigma Bt} \text{]} = e^{\frac{4\sigma^2 t}{2}} = e^{2\sigma^2 t} \end{aligned}$$

$$V[St] = So^{2} e^{2\mu t + 2\sigma^{2}t} - So^{2} e^{2\mu t + \sigma^{2}t} = So^{2}e^{2\mu t} e^{(2\sigma^{2}t - \sigma^{2}t)}$$

(iii) Cov[St1,St2] when 0<t1<t2



Dharini Shah Roll Number: 413

7. $dC = \mu Cdt + \sigma CdWt$

recombining binomial tree

(i) first step of binomial process

	р	S0*u
S0	Probabilities	
	(1-p)	S0*d

Doubt

8. binomial

(i) Derive the Price of option in one step binomial model using risk neutral valuations.

The share price SO can either move upwards to SOu or downwards to SOd, according to one step binomial model. and $d < e^r < u$ as principal of no arbitrage applies.

The derivative pays cu if the price goes up and cd if the price goes down.

So, in a portfolio, at time 0,

There are ϕ units of cash and \emptyset units of stock

$$V = \emptyset So + \varphi$$

At time 1,

It's either;

 $V1 = \emptyset Sou + \varphi e^r or \emptyset Sd + \varphi e^r$

Therefore,

 $Cu = \emptyset Sou + \varphi e^r$ and $Cd = \emptyset Sd + \varphi e^r$

Solving two equations simultaneously, we get

$$\emptyset = \frac{Cu - Cd}{SO(u-d)}$$
 and $\varphi = \frac{e^{-r}[uCd - dCu]}{u-d}$

inputing the values back in equation at time 0:

$$V0 = e^{-r}(Cuq + (1-q)Cd)$$

Where $q = \frac{e^r - d}{u - d}$ and q is the risk neutral probability.

- (ii) Price of the option does not incorporate the probabilities of the stock going up or stock going down even though it is intuitive to assume. As we observe the formula, the price of the option is calculated on the potential derivative payoffs of upward and downward movement with risk neutral probability introduced by us, which also just depends on u, d and r.
- (iii) Show that underlying stock price grows on average at risk free rate

Expected value of stock price at time 1 can be written as

$$E(St1) = SO (qu + (1-q)d)$$

And substituting the values of q and (1-q)

We get E(St1) = S0
$$e^r$$

Hence we can see that the underlying stock price grows at risk free rate on average.

Dharini Shah Roll Number: 413

(iv) In terms of risk neutral world,

People do not require compensation for risk as they are indifferent to risk. Hence, expected return on all securities and options is the risk free intere

9. Table

(i) Calculate price of 3 month forward on iota ltd

$$F = Soe^{rT}$$

Where F is the price of forward, So is the stock price, r is the risk-free rate continuously compounded and t is the time to expiry.

Put call parity says that:

$$c + Ke^{-rt} = p + So$$

since we need So and r, we can input 2 values from the table and solve simultaneously to get So and r

$$13.334 + 70e^{-r*3/12} = 0.120 + S0$$

$$8.869 + 75 e^{-r*3/12} = 0.568 + S0$$

Solving simultaneously, we get

$$r = 7.02\%$$

$$S0 = 81.996$$

Hence,

Price of forward is 83.447

- (ii) Calculate forward rate for delivery between 3 months from now and 6 months from now
- (iii) According to put call parity,

$$c + Ke^{-rt} = p + So$$

To find a,

$$6.889 + a*e^{-0.0702*0.25} = 1.055 + 81.996$$

$$a = 77.51$$

To find b,

$$b + 80*e^{-0.0702*0.25} = 1.789 + 81.996$$

$$b = 5.1768$$

To find c,

$$2.594 + 85*e^{-0.0702*0.25} = c + 81.996$$

c = 4.119

10. N step recombining binomial model

Each time period is one month

Interest rates are assumed to be zero

(i) Show that the risk neutral step up probability q is less than 0.5

$$q = \frac{e^r - d}{u - d} \text{ and since interest rates are 0,}$$

$$q = \frac{1 - d}{u - d}$$

in recombining model d = $\frac{1}{u}$

substituting this value, we get

$$q = \frac{1}{u+1}$$

and if no arbitrage principle is supposed to hold, d < 1 < u

then, u > 1

u+1 > 2

$$\frac{1}{u+1} < 7$$

$$q < \frac{1}{2}$$

hence proved.

11. Sum

(i) Recombining binomial tree: here, the size of upward movement (u) and downward movement (d) are assumed to be the same under all states and all time intervals. And hence it also has a constant risk neutral probability q at all times and states.

Main advantage is that it only has n+1 possible states of time as opposed to 2^n states in non-recombining binomial tree. This reduces the model by a large extent.

Disadvantage is that it assumes the upward and downward movement to be constant which may not be true in real world scenario.

(ii) Two step binomial tree

6 month European put option

K = 950

S0 = 1000

For first three months,

U1 = 1.1

D1 = 0.95

Rf1 = 1.75%

For next three months,

U2 = 1.2

D2 = 0.9

Rf2=2.5%

(a) Value of put option

$$q1 = \frac{e^r - d}{u - d} = 0.4510$$

$$q2 = 0.41772$$

K=950

State	St	payoff	
V1(1) = So u	1100	0	
V1(2) = So d	950	0	
V2 (1)= So u u	1320	0	
V2(2) = So u d	990	0	
V2(3) = So d u	1140	0	
V2 (4)= So d d	855	95	

V1(1) =
$$e^{-r}$$
 ($Cu \ q + (1 - q) \ Cd$)
V1(1) = 0
V1(2) = e^{-r} ($Cu \ q + (1 - q) \ Cd$)
V1(2) = $e^{-0.025}$ (0.41772 * 0 + 0.58228 * 95)
V1(2) = 53.9508
V0 = e^{-r} ($V1(1)q + V1(2)(1 - q)$)
V0 = $e^{-0.0175}$ (0.4510 * 0 + 53.9508 * 0.5490)
V0 = 29.105

(b) Main disadvantage would be to have appropriate values for each time step, i.e. values for u, d and r at each step. This would produce more accurate answer but it is difficult to obtain all these parameters.

Also, a new tree would have 2⁶ i.e. 64 nodes and this is extensive.

An alternative model is 6 step recombining tree that will only have 6+1 i.e. 7 nodes and constant values of u and d.

- 12. Zt is the standard Brownian motion, derive SDEs and explain which process has zero drift
 - a. U(t) = 2Zt 2

By Ito's Lemma,

dUt = dZt 2 - 0

dU(t) = 0dt + 2dZt

- U(t) has zero drift.
- b. $V(t) = (Zt)^2 t$

By Ito's Lemma,

$$dV(t) = dZt (2*Zt) + dt(-1) + \frac{(dZt)^2}{2} * 2$$

dV(t) = 2Zt dZt - dt + dt

dV(t) = 2Zt dZt

V(t) has zero drift.

c. W(t) =
$$t^2 Z(t) - 2 \int_0^t s Z(s) ds$$

13. At the money American put option

$$S0 = 200$$

Rf = 10% pa
 $\sigma = 35\%$ pa
t=2 months

(i) Values of u and d

St = S0 $e^{((\mu-1/2\sigma^2)T+\sigma dWt)}$, since stock price follows geometric Brownian motion Thus, $\frac{St}{So} \sim \ln N((\mu-\frac{\sigma^2}{2})T, \sigma^2T)$

Assumption:
$$u = \frac{1}{d}$$

 $e^{(\mu+1/2\sigma^2)}$ = mean of a log normal distribution

$$\mathsf{E}(ST/S0\,) = e^{\left(\left(\mu - 1/2\sigma^2\right)dt + 1/2\sigma^2dt\right)} = e^{\mu}dt$$

E(ST)=S0
$$e^{\mu}dt$$

The variance is given by:

Var(ST/S0)=E (ST/S0)^2-(E(ST/S0))^2

$$= lnu^2q + (-lnu)^2(1-q) - (S0e^\mu dt)\sigma^2 dt$$

$$= lnu^2q + (-lnu)^2(1-q) - (S0e^\mu dt)\sigma^2 dt$$

$$= (-lnu)^2 \sigma \sqrt{d}t$$

= lnu

Thus,
$$u = e^{(\sigma\sqrt{d}t)}$$
 and $d = e^{(-\sigma\sqrt{d}t)}$

(ii) Value of American put option using 2 time step

q=0.5161

Payoff at time 1= 0, 9.85 and payoff at time 2= 0, 0, 6.62, 19.22

Value of (holding the) option a time 1= $e^{(-0.1*1/12)} (6.62 \times q + 19.22(1-q))$

=12.61. This is more than the payoff of exercising the option (9.85). Thus, we will hold the option.

Value at time 0=
$$e^{(-0.1*1/12)}(0 + (1-q)12.61)$$

Value of put option at time 0=6.05

14. S0 = 500

One-time step: 3 month period

$$T = 2$$

$$u = 1.06$$

$$d = 0.95$$

rf = 5% pa continuously compounded

(i) Value of six-month European call option with K = 510 Payoff diagram for European call:

State	St	payoff
V1(1) = So u	530	20
V1(2) = So d	475	0
V2 (1)= So u u	561.8	51.8
V2(2) = So u d	503.5	0
V2(3) = So d u	451.25	0

$$q = \frac{e^r - d}{u - d} = 0.5689$$

Value of 6 month European call=
$$e^{-r}(V1(1)*q+V1(2)*(1-q))$$
 Where V1(1) = $e^{-r}(V2(1)*q+V2(2)*(1-q))$ V1(2) = $e^{-r}(V2(2)*q+V2(3)*(1-q))$ Hence, V0 = 16.351

(ii) Payoff diagram for European put:

State	St	payoff
V1(1) = So u	530	0
V1(2) = So d	475	35
V2 (1)= So u u	561.8	0
V2(2) = So u d	503.5	6.50
V2(3) = So d u	451.25	58.75

Value of 6 month European put =
$$e^{-r}(V1(1)*q+V1(2)*(1-q))$$

Where V1(1) = $e^{-r}(V2(1)*q+V2(2)*(1-q))$
V1(2) = $e^{-r}(V2(2)*q+V2(3)*(1-q))$
Hence, V0 = 13.759

Using put call parity,

$$C + Ke^-rt = P + SO$$

LHS:
$$16.351 + 510e^{-0.05*1/2} = 513.759$$

RHS: 13.759 + 500 = 513.758

Hence proved.

(iii) For american option , payoffs are same, although only difference is the time when the option can be exercised. So we calculate the value of put at time 1 too, to check if it is advisable to exercise early.

V1(1) =
$$e^{-0.05*1/4}$$
 (6.5 * 0.4311 + 0) = 2.767
V1(2) = $e^{-0.05*1/4}$ (6.5 * 0.5689 + 58.75 * 0.4311) = 28.65
However, payoff by immediate exercise at V1(2) is 35.

35>28.65

Advisable to exercise immediately at this point.

Value of American put is
$$e^{-0.05*1/4}(35*0.4311 + 2.767*0.5689) = 16.46$$

(iv) Expected return = 9%

So expected payoff in 3 months is calculated using this real rate of return.

Thus p =
$$\frac{e^{0.09*3/12} - 0.95}{1.06 - 0.95}$$
p=0.6614

The payoff at time V1(1) of the call option was 20

Hence the expected payoff = 20*0.6614=13.228.

However, we might not know the correct discount rate that is to be used to compute the real world probability and hence the expected payoff. Therefore, it is easier to use risk neutral valuations wherein the asset is expected to earn only the risk-free rate.

15.
$$dS = \mu Sdt + \sigma Sdz$$

(i) process followed by S^k

$$f(St) = S^{k}$$

$$\frac{\partial F}{\partial St} = k^{*}S^{k-1}$$

$$\frac{\partial^{2}F}{\partial St^{2}} = k(k-1)^{*}S^{k-2}$$

$$\begin{split} dF &= dSt * k \ S^{k-1} + (dSt)^2/2 * k(k-1) * S^{k-2} \\ df &= (\mu \text{Sdt} + \sigma \text{SdZt}) \ k \ S^{k-1} + (\sigma^2 S^2 dt) * \frac{k(k-1)}{2} \ S^{k-2} \\ df &= \mu k \ f \ dt + \sigma k \ f \ dZt + \sigma^2 \frac{k(k-1)}{2} \ f \ dt \\ df &= (\mu k + \sigma^2 \frac{k(k-1)}{2}) \ f \ dt + \sigma k \ f \ dZt \end{split}$$

Hence,

 S^k follow geometric Brownian motion with drift i.e. $\mu 1 = \mu k + \sigma^2 \frac{k(k-1)}{2}$ and volatility $\sigma 1 = \sigma k$.

f/fo follows lognormal distribution with mean ($\mu 1-1/2 \sigma 1^2$) and variance with $\sigma 1^2$ t.

(ii)
$$f(St,t) = St e^{-rt}$$

$$\frac{\partial F}{\partial St} = e^{-rt}$$

$$\frac{\partial^2 F}{\partial St^2} = 0$$

$$\frac{\partial F}{\partial t} = -re^{-rt}St$$

Dharini Shah Roll Number: 413

By ito's lemma, $df = -re^{-rt}St \ dt + dSt \ e^{-rt}$ substituting dSt, $df = (\mu - r)f \ dt + \sigma f \ dZt$ process is martingale is and only if the drift term i.e. dt term is 0. Here, if $\mu = r$, then the process is a martingale.

(iii) For S^k to be a martingale, We need drift term to be 0 i.e. $\mu k + \sigma^2 \frac{k(k-1)}{2}$ to be 0. If the values solve to be 0, we can say that the process is a martingale.