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Assignment 2
Semester 4
Statistical and Risk Modelling - 2
Question 1]
Answer:
(i)
Writing the state space in the order {Bid (B), Offer (O)}, the generator matrix is:

B[—}L A J

olp —n)

(ii)

The holding times are exponentially distributed with parameter A in state B, and [ in state
0.

(i)

(iv)

We have a two-state model so:




BE BO
B+ BT =1
Substituting:

El

J

rﬂBB = '}“-rﬂBB +(1- rR-BB):

g[ew((lw}f)-fﬁm} = p.exp((A+p)t):

and hence

exp((h+ u)i‘).rPSBB = }L.exp((l + W )t) + constant.
L+ L
Since the process is in state Bid at time s (i.e. f =0),

. A
the constant is .
L+ A

and thus Ij”SB‘E= Ry A exp(—(A +p)f).
A+p A+p

Question 2]
Answer:

(i)
Done

(ii)
% (t)=-0.3P,(t)+0.1P(t)+0.3P,(t)
% s(t)=0.2P,(t)-0.5P (t)+0.1P,(¢t)
%Pﬂc(ﬂ =0.1P,,(t)+0.4P,(t)-0.4P, (t)

(i)




EITHER

To stay in state 4 the equation reduces to:

4 p (£)=—03P_ (1)
dt A4 AA

which has solution

P (t)=exp(-0.3t)

So for t = 2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 +0.2)*2 =0.6

e20.6°
0!

P(Poi(0.6)=0) =

=™ =0.5488

(iv)
The only paths under which the third jump is into state C are BAC, CAC
and CBC.
The probabilities of each jump are given by the ratio of the transition rates.

So, the probabilities for each path are:

211 2
BAC=".". =
353 45
131 1
cACc=_.". =
3743 12
114
CBC==.—.—=—
34’5 15

Sum=7/36=0.194.
Question 3]

Answer:

(i)




1. Never 2. Taking ol 3. Nolonger
Nimble Taking
Nimble

Taken
Nimble

h

F Y

4, Death by 5. Death

Heart Disease other

(ii)
Using the Markov assumption
the Chapman Kolmogorov equation is

34 _ 31 14 32 24 33 34 34 44 35 54
dret Px =t Py arPxat +r Py Pyt +r Py i Pyt +r Py Pyt %t Py dr Pt -

. 54 31
Since dtPxst =t Py =0

34 32 24 33 34 34 44
dtst Py =t Py atPxst Yt Py dtPyst Yt Py at Pt

Given that P:jf =1
And assuming that, for small dt

a Pl =Y, dt +o(dt) i 4]

where lim o(dr) =

0,
di—0 dt

then substituting, we have
34 3224 33 34 34
drst P5 =1 Py Wi At +; Py py A+, pi +o(dr)

34 34 32 24 33 34
so that dar+t Py —1 Px =t Px P-_\'de +: Py P—1+Idt+0({ﬂ)

Question 4]
Answer:
(i)
The mean is equal to the parameter, so there are 3 calls per hour.
(ii)
The process is memoryless so the fact that Fred has not had a call for

15 minutes is irrelevant.
Expected time until next call is 20 minutes.




(i)

This is the probability of zero calls in time 0.5 hours.
Using p; (1) =e”" (M) / J!
OR

e 1 (1.5)°

Since py(0.5) = o1

2,(0.5)=¢1° =0.2231 .

(iv)

The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.
Per hour this is 3 calls times 7 minutes = 21 minutes.

So, the probability that the phone is engaged is 21/60 = 0.35.
Question 5]
Answer:

(i)

EITHER

Using the Markov assumption,

OR
The Chapman Kolmogorov equation is




Py (X1 % A1) = Prg (30, 8) P (2.1 + A1)
+ P (X )P (1 +dE) + pop (x. 1) Py, (2.1 +dE)

But pry(t.t+df)=0 or other explanation why path through D can be
ignored

So:
Doy (X1 4d1) = P (X 1) P (1.2 +d8) + P (x. 1) Py (2.2 + )
Assuming that, for small d¢

Py (t.t+df)= I'Ly. ()dt + o(dt) e

Dt +dt) =1+ d; (1)dt +o(dr)

OR

pu(t.t+di)=1= hy(t)dr +o(dt)

i

_oldr)
where the As are the instantaneous transition rates and 5 .y 4

0,
then substituting, we have

P (x.t+df) = pggy(x. )1 =a(f)dt =u(t)dt) + pgs (x.1)p(r. C; ) + o(dt)
so that

Prpy (.t +d6) = ppgy (x.1) = pygg (x.)(=0() = (1))t
+pgs (x.D)p(t, C;)dt + o(dt)

and hence

fiy PEE T+ dl) = P (x.1)
dt—{ ﬂrf

= pgg (x.1)(=o(®) = p(1) + pgs (x.0)p(.C;)

d
- 1=
drFHH(I )

(ii)

The equation simplifies when considering pgz(?) to

d
—p_(0.))=—(c(O)+u@)p_ (1)
dt” B mm




p_ (0.f)dt
HH

iP_(D.r}=—(J(f)+#(f)) = ilﬂp_ (1) .
b dt HA

Integrate both sides:

(o pz(0.0)] =

—

—(o(s) +u(s))ds
5=0

as pH—H(0}=1

i
Pz (0.0 =exp—( [ (0(s) +u(s))ds)

5=0

Question 6]

Answer:

The similarities and differences between Markov Chain, Markov Jump Chain and Markov
Jump Process are as follows:

1. Allthe mentioned processes have a discrete state space.

2. Markov chain and Markov jump chain operates in discrete time but a Markov jump
process operates in continuous time.

3. All the mentioned processes satisfy the Markov property which is that the future
value of the process can be determined from its current state alone, without
reference to its past history.

4. Markov jump chain obeys the Markov property and behaves as a Markov chain
except when the jump encounters an absorbing state.

5. Markov jump chain and Markov chain are expressed in terms of probabilities
whereas Markov Jump process is expressed in terms of rates.

6. Markov Chain can have loops in each state, Markov jump process cannot and the
Markov Jump chain only has loops on absorbing states.

Question 7]
Answer:

(i)

The maximum likelihood estimates of the transition intensity from state i to state j is the
number of transitions from state i to state j divided by the total waiting time in state i.

To estimate the transition intensities exactly we therefore need

the total time spent in each state

OR




entry and exit times for each individual for each state,

and the total number of transitions of each type made.
(ii)

Define p,(s.t) to be the probability of being in state Active at time s+t if Active at
time s.

Then EITHER

0
5 P (5,8)=—p 44(s, D1

'
= pur(s.)=p (.00,
Py

OR

%p(s,r) =p(s,t)M

where M :( OIJ I;J in order Active, Theft,

OR

Integrated forward equations:

it
Pyy(s.t)= EXP[_Lzs udu)

)
PAI[SJ}=J:F=OP‘L1(5~H)-H-W“-

i)
EITHER

Measure from time zeroi.e., s = 0 and drop s from notation.




%tm(mm _—

hence p ,(t) = exp(—ut + C).

As p,,(0)=1,C=0,so0

P.44(r) =exp(—r)
A claim occurs with cost £C if moves to state “Theft Claim”.
Hence the expected cost is C (1 exp(-uT))

OR

Solving for p ., we have

% Py =p(On=_1-p (@)U (as the model has only two states).

Using an integrating factor, we can write
d
g[ﬂp(w)p‘;r(f)} = pexp(ur),

exp(Ut)p 47 (f) = exp(us) -1,

Par(f) =1-exp(-1),
and hence the expected costis C(1—exp(—uT)).

OR

Solving the integrated forward equation

T T
PAT [T) = L:{J eXP(—HS)!-ldS = [—eXP(P-S)]g =1=exp(-u7),
and hence the expected costis C(1—exp(—uT)).

(iii)




1
Active Theft
policy claim
A

(iv)
dJ
We now have § PO =—p o (OU+A).
So p () =exp(—(u+1)1).
We want % P70 =p  (Ou=pexp(—(u+A))).

a

Solving this produces p 47 (f) = (u_rl) exp(—(1L +A)1)) , = “% (I—exp(~(L+M)T)) .
So claims become 0 t 3 C(l—exp(—(L+M)T)).
Question 8]
Answer:
(i)
{0,1,2,3,4....}
(ii)
A A A A
@ 1 2 3 VR >
) n ) n ) [ ) H _J-; _____

(i)

Generator matrix




Lives 0 1 2 3 4
0 0 0 0 0
o —(u+a) A 0 0
0 vl —(u+4) A 0
0 0 1l —(u+21) A
0 0 0 n —(u+2)
(iv)
EITHER

If a Markov jump process Xt is examined only at the times of transition, the
resulting process is called the jump chain associated with Xt

OR

A jump chain is each distinct state visited in the order visited where the time
set is the times when states are moved between.

(v)

Lives 0 1 2 3 4
1 0 0 0 0 etc.
p/(u+i) 0 A(u+2) 0 0
0 n/(u+r) 0 A (u+A) 0
0 0 w/(u+Ai) 0 Al(n+4)
0 0 0 w/(u+2a) 0
etc.

(vi)

)

Question 9]

Answer:

(i)

A generator matrix is a matrix whose entries signify the transition rates from one state to
every other in a Markov Jump process.

Each row of the generator matrix sums up to zero since Wi = — Xj » j Hixj




(ii)
Required state space is {0, 1, 2}, since the 2 policies in force can still be in force at a future
time, either of the policies can be claimed or ‘lapsed’ or both can expire at a future time.

(iii)

ulo pu21

Question 10]

Answer:
(i)

d
—P(t)=-21x P (1)

d
= E[ln%(r)] = -2t

= In P,E(S) = —s” + constant

We know PE(O) =1, hence constant =0

-

g — _S_
Hence, PE (s)=exp

(i)

P(in first visit to B at time T in state A at t =0)




= J.OT P(remains in A to time s)
x P(transition to B in time s, 5 + ds)
x P(remains in B to time 7) ds
T
= | P(s)x2s x Pz (s,T)ds

5=0

Using the result from part (i) and the similar result for Pzz with boundary

condition Pgg(s, s) = 1, this gives us:

(iii)
a) The sketch should be shaped like:

Probability

Time

e |Initially probability increases from 0 at T = 0, and accelerates as
the transition rate from A to B increases.

e However, as transitions increase, it becomes more likely that the
process has already visited state B and jumped back to A.
Therefore, the probability of being in the first visit to B tends
(exponentially) to zero.

b) Differentiate to find turning point:




dl _2 2 _2 .
—[e d xr”}=2txe T2 ke
dt

set derivative equal to zero

e x2x(1-£)=0

implies =1 for a positive solution
and. from above analysis, this is clearly a maximum.

Question 11]
Answer:
(i)

Let Nt denote the number of claims up to time t. Since the Poisson process has stationary
increments, we may take t = 0, so that the required conditional distribution is

P(Ty<y, N,=1)
P(N, =1)

P(Iy<y|N,=1)=

P( N,=1, N,-N, =0
P(N, =1)

But N, — N, is independent of N,
and has the same distribution as N__...

Thus the right hand side above equals

(Aye ) 60 Ly

hse ™ 5

»

which is the cdf of the uniform distribution on [0, s].
(ii)
Since holding times are independent, each having an exponential distribution, their joint

density is

n_—h(fp+t+ o+t )
Le l{_.rl_fl\...‘f”}[}}_

(iii)
We have, as in part (i),

P(N;=k, N,=n)
P(_Nr = n)

P(N,=k|N,=n)=

P( N;=k, N,-N,=n-k)
P(N, =n)




Using again that the Poisson process has stationary and independent
increments, and that the number of claims in an interval [0, t] is Poisson ( t),
we derive from above that

—hs

e [}Ls)k ‘ e—l(f—s)}u;r—k [T_S)n—?r

k! -k)!
P(NS =k|N, zr:-') = - (n k)
e—h.f(lr)ﬂ
n!
Q_;U},”Sk(f—s)”_k n
T K-k My
n! sE(t -5k

- k' (n—-k)! ‘ £k -k

e

which is binomial with parameters » and s/t.




