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Q.1 

(i) 

S0 = £65  

σ =25% p.a. 

r = 2% p.a. 

X= £55 

T= 6 months 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

  d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T  

c0 = £11.41871 

(ii)  

The delta of a call option is defined as the change in the price of the call option with respect 

to the change in the price of the underlying. 

∆c=
dct

dSt
  

(iii)  

 ∅(d1) = 0.862134 

(iv)  

Using put-call parity, 

∆p + 1 =  ∆c 

∆p= −0.1379 

 

 

  



Q.2 

(i) 

The delta of an option is defined as the change in the price of the option with respect to the 

change in the price of the underlying. 

∆c=
dct

dSt
  

Vega of an option is defined as the change in the price of the option with respect to the 

change in the volatility of the underlying. 

Vc =
dct

dσ
 

(ii)  

Using the put-call parity, 

pt + S0 = ct + K ∗ e−rt 

Differentiating w.r.t. σ 

Vp = Vc 

Hence Proved. 

(iii)  

S0 = $55 

X = $50 

σ = 25% 

r = 5% 

T = 1 year 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

  d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T   

d1 = 0.7062 and d2 = 0.4562 

Thus, ct = $9.6526 

Using the put-call parity, 

 pt = $2.214017 

(iv)  



For a portfolio to be ‘delta-hedged’, it means that for a change in  the price of the underling, 

the value of the derivative does not change i.e., it is not sensitive to the change in the price of 

the underlying. 

Similarly, for a portfolio to be ‘Vega-hedged’, it means that for a change in the volatility of 

the underlying, the value of the derivative does not change i.e., it is not sensitive to the 

change in the volatility of the underlying. 

  



Q.3 

(i) 

The price of the derivative at time t is given by: 

Price = e−r(T−t) ∗ EQ[XT|Ft]  

(ii)  

S0 = £50 

X = £49 

r = 5% p.a. 

σ = 25% p.a. 

T = 6 months 

Value of the European call option, assuming Black Scholes model holds true, 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

  d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T    

d1 = 0.3441 and d2 = 0.1673 

Thus, ct = £4.6604 

(iii) 

Value of the American call option = Value of the European call option = £4.6604 

(iv)  

Using the put-call parity, 

pt + S0 = ct + K ∗ e−rt 

pt = £2.4506 

(v)  

If dividends were payable, then this would cause the value of the underlying asset to fall, 

each time by the amount of dividend payable. 

The value of the European call option would decrease, as having the option to buy a share 

which would be less, for a fixed price at the expiry date, would be less valuable. 

The value of the American call would increase relative to the European call. 

  



Q.4 

(i) 

The CMG theorem states that: Suppose Zt is a SBM under P. And there exists a measure Q 

such that P and Q are equivalent measures then,  

Zbar(t) = Zt +  γt 

(ii) 

The discounted value of a security price process is a martingale under the risk neutral 

measure. 

Q.5 

 

(i) 

The delta of an option is defined as the change in the price of the option with respect to the 

change in the price of the underlying. 

∆c=
dct

dSt
=  ∅(d1) 

(ii) 

S0 = $40 

r = 2% p.a. 

X = $45.91 

T = 5 years 

∆ = 0.6179 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

  d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T    

∅(d1) = ∅(0.3) = 0.6179  

d1 = 0.3 − From tables 

0.3 =
ln (

40
45.91

) + (2% +
1
2 ∗  σ2) ∗ 5

σ ∗ √5
 

σ = 32% 

(iii) 



The general risk-neutral pricing formula for a derivative that pays an amount XT at time T is 

given by: 

V0 = e(−rT) ∗ EQ[XT|F0] 

Since, the stock prices are independent, 

V0 = e−rT ∗ c ∗ Q [
S1

S0
< kS] ∗ Q [

R1

R0
< kR] 

(iv)  

For two perfectly correlated stock prices St and Rt, then 

S1

S0
=

R1

R0
 

Thus, the equation for V0 can be written as: 

V0 = e−rT ∗ c ∗ Q [
S1

S0
< kS,

S1

S0
< kR] 

V0 = e−rT ∗ c ∗ Q [
S1

S0
< min(kS, kR)] 

V0 = e−rT ∗ c ∗ Q [
R1

R0
< min(kS, kR)] 

(v) 

We know, under the Black Scholes option pricing model, 

1 −  ∅(d2) =  ∅(−d2) = ∅ (
ln (

X
S0

) − (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
) 

V0 = e−rT ∗ c ∗ Q[S1 < S0kS] ∗ Q[R1 < R0kR] 

V0 =  $1.6075 

Q.6 

  

(i) (a)  

Delta for a put option is given as: 

∆p=  ∅(d1) − 1 

(b) 

Since, it’s a delta-hedged portfolio, 

V0 =  ψ − 24830 ∗ S0 

∆V=  −24830 



For the delta of the portfolio to replicate the delta of the put option we set 100000∆p=  ∆V 

∆P=
∆V

100000
=  −0.2483 

(ii) 

Since, 

∆p=  ∅(d1) − 1 =  −0.2483 

∅(d1) = 0.7517 

d1 = 0.68 

d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
 

Solving the above equation by substituting the values, we get 

σ = 7.1% 

(iii) (a)  

pt = K ∗ e−rT ∅(−d2) − S0 ∗ ∅(−d1) 

d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

d2 = d1 −  σ ∗ √T 

pt =  £0.0696 

(iii) (b) 

V0 =  ψ − 24830 ∗ 6.40 

ψ =  £165,872 

Q.7 

  

(i) 

The delta of a derivative is defined as the change in the price of the derivative with respect to 

the change in the price of the underlying. 

Gamma of a derivative is defined as the change in the delta of the derivative with respect to 

the change in the price of the underlying. 

Vega of a derivative is defined as the change in the price of the underlying with respect to the 

change in the volatility of the underlying. 

(ii)  

Given data: 



Since, delat for a call option under the Black Scholes option pricing model =  ∅(d1) =
0.80106. 

(iii) 

The replicating portfolio is constructed using let say ψ amount of the cash and ϕ units of the 

underlying. 

V0 = ψ + ϕ ∗ S0 

The delta for this portfolio is given as, 

∆v= ϕ = 0.801 

Vega of the replicated portfolio is equated to 0.801 because of the reason it being a delta-

hedged portfolio. 

V0 = ψ + 0.801 ∗ S0 

V0 = ψ + 48.06 

Thus, 17.91 = ψ + 48.06 

ψ =  −30.15 

Thus, the portfolio contains 0.801 units of the share and a short position in cash of amount 

$30.15 

(iv) 

We know, 

∆c

∆σ
=

dc

dσ
 

c2 − c1

2%
= 29 

c2 =  $18.49  

Q.8 

 

(i)  

The delta of an option is defined as the change in the price of the option with respect to the 

change in the price of the underlying. 

∆c=
dct

dSt
=  ∅(d1) 

(ii) 

Given data: 

S0 =  $100 

r = 3% 



X = $109.42 

T = 1 year 

∆c= 0.42074 

ϕ(−0.20) = 0.42074 

Thus, d1 = −0.20 

d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
 

σ = 20% 

Q.9 

Answer: (i)  

The function g must satisfy: 

dg

dt
+ (r − q) ∗ St

dg

dSt
+

1

2
∗ σ2 ∗ St

2 ∗
d2g

dSt
2 = rg 

The boundary condition applies at maturity and is DT = g(T, St) = f(ST) 

(ii)  

Suppose, Dt = g(t, St) =
St

n

S0
n−1 eμ(T−t) with n>1 

Then DT = g(T, ST) = f(ST) =  
ST

n

S0
n−1, so the boundary condition is satisfied. 

The partial derivatives in the PDE in question (i) are given by, 

dg

dt
=  −μg 

dg

dSt
=

n

St
g 

d2g

dSt
2 =

n(n − 1)

St
2 g 

Substituting, 

−μg + (r − q) ∗ St ∗
n

St
g +

1

2

σ2St
2n(n − 1)

St
2 g = rg 

μ = (r − q)n − r +
1

2
σ2n(n − 1) 

Q.10 

  



(i)  

Consider a portfolio which is long one call and cash of K ∗ er(T−t) and short one put 

The portfolio has a payoff at the time of expiry of ST 

ct + Ker(T−t) − Pt = St 

(ii) 

Given data: 

X =  $120 

T = 1 year 

ct =  $10.09 

r = 2% p. a. 

S0 =  $110 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

 d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T 

σ = 30% 

(iv) (a) 

The payoff from the portfolio D, satisfy, 

S1 − 121 ≤ D ≤ S1 − 120 

It follows that the initial price, V, of the portfolio should satisfy, 

S0 − 121e−r ≤ V ≤ S0 − 120e−r 

i. e. , −8.604 ≤ V ≤  −7.624   

(b)  

And this implies that 17.714 ≤ P0 ≤ 18.6914 

(v)  

The Black-Scholes price (using the formula) is $18.35 

Q.11 

 

(i) 

Given data: 



X =  $150 

r = 2% p. a. 

S0 =  $117.98 

We know, ∆portfolio= 100000∆c − 18673 ∗ ∆s 

But, ∆s= 1 and ∆portfolio= 0 

Thus, ∆c= 0.18673 

(ii)  

Since, under the Black Scholes option pricing model, ∆c= ϕ(d1) 

ϕ(d1) = 0.18673 

Thus, d1 =  −0.89 

Using the black sholes option pricing formula, 

ct = S0 ∗  ∅(d1) − X ∗ e−rt ∗ ∅(d2) 

 d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

d2 = d1 −  σ ∗ √T 

σ = 22% p. a. 

(iii) 

Using the black sholes option pricing formula, 

pt = K ∗ e−rT ∅(−d2) − S0 ∗ ∅(−d1) 

 d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

 d2 = d1 −  σ ∗ √T 

pt =  $31.45 

(iv) 

Taking partial derivatives of the put-call parity relationship with respect to S0 gives, 

∆c= ∆p + ∆s 

γc = γp + γs 

So, the investor must have a short position in 100,000 put options. 

If we let x be the number of units of stock held by the investor, the total delta for the portfolio 

is given by, 



∆portfolio= 100000∆c − 100000∆p + x∆s= 0 

x =  −100000 

Q.12 

 

(i)  

The main assumptions underpinning the Black-Scholes model are as follows: 

 No taxes or transaction costs. 

 Complete divisibility of holdings is allowed. 

 Unlimited buying and selling. 

 Underlying asset follows a continuous path. 

 Geometric Brownian motion. 

 The risk-free rate and the volatility of the underlying asset is constant. 

 Investors are rational and risk-averse. 

 dSt = μStdt + σStdBt where Bt is a SBM 

(ii)  

S0 =  £8 

X =  £9 

r = 2% p. a. 

σ = 20% p. a. 

T = 3 months =
3

12
years 

Using the black sholes option pricing formula, 

pt = K ∗ e−rT ∅(−d2) − S0 ∗ ∅(−d1) 

d1 =
ln (

S0

X ) + (r +
1
2 ∗  σ2) ∗ T

σ ∗ √T
  

d2 = d1 −  σ ∗ √T 

pt =  £1.01 

(iii)  

The risk-free rate and the put option price are inversely related. 


