
SRM ASSIGNMENT 1  

Q1] 

𝑞𝑥𝜇
  = 𝑃[𝑇𝑥 ≤ 𝜇 ] 

 = 𝑃[𝐾𝑥 = 0  &  𝑆𝑥 ≤ 𝜇 ] 

= 𝑃[𝐾𝑥 = 0 ] ∗ 𝑃[𝑆𝑥 ≤   𝜇 ] 

Since Kx and Sx are independent  

𝑃[𝑆𝑥 ≤   𝜇 ] = ∫ 1𝑑𝑥 
𝜇

0

= 𝜇 , 𝑠𝑖𝑛𝑐𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

𝑃[𝐾𝑥 = 0] = 𝑞𝑥  

 𝑇ℎ𝑢𝑠  𝑞𝑥𝜇
 = 𝜇 ∗ 𝑞𝑥    

 

Q2] 

𝑎) 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑡𝑜 𝑟𝑖𝑠𝑘 ∶ 

 𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑖𝑠 1.6.2000 𝑡𝑜 25.10.2000 

= 30 + 31 + 31 + 30 + 25 = 147 𝑑𝑎𝑦𝑠 

=
147

7
= 21 𝑤𝑒𝑒𝑘𝑠 

 

𝑏) 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑡𝑜 𝑟𝑖𝑠𝑘  

         𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑖𝑠 1.6.2000 𝑡𝑜 31.5.2000 = 52 𝑤𝑒𝑒𝑘𝑠 

 

 

 

 

 

 



 

 

 

Q3] 

Left Censoring: 

Data in this study would be left censored if the censoring mechanism prevent 

us 

from knowing when the policyholder joined the company. 

This is not present because the policy issue date is given. 

 

Right Censoring: 

Data would be right censored if the censoring mechanism cuts short 

observations in 

progress, so that we are not able to discover if and when the policy is 

surrendered. 

Data in this study would be right censored if the policy is terminated before 

the 

maturity date for reasons than surrender. 

 

Interval Censoring: 

Data in this study would be interval censored if the observational plan only 

allows us 

to say that the duration of policy at the time of surrender fell within some 

interval of 

time. 

Here we know the calendar year of surrender and the policy issue date, so we 

will 



know that the duration of the policy falls within one year rate interval. 

Interval 

censoring is present. 

 

Informative Censoring: 

Censoring in this study would be informative if the censoring event divided 

individuals into two groups whose subsequent experience was thought to be 

different. 

 

Here the censoring event of surrendering the policy might be suspected to be 

informative, as those who are likely to surrender the policy to be in better 

health 

than those who do not surrender the policy. 

 

Q4] 

𝑖) 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑖𝑓𝑒 − 𝑒𝑥
 ̇  

𝑒𝑥̇ = 𝐸[𝑇𝑥] =  ∫ 𝑝𝑥𝑡
 

𝜔−𝑥 

0

 𝑑𝑡 

𝑇ℎ𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑔𝑒 ,  

𝑖𝑛 𝑠ℎ𝑜𝑟𝑡 𝑖𝑡 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑒 𝑒𝑐𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛 𝑎𝑔𝑒𝑑 𝑥 .  

 

𝑖𝑖) 𝐶𝑢𝑟𝑡𝑎𝑡𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑖𝑓𝑒 − 𝑒𝑥  

𝑒𝑥 = ∑ 𝑝0 𝑘
 

∞

𝑘=1 

=   ∑ 𝑒−0.0325𝑘  

∞

𝑘=1 

 =
𝑒−0.0325

(1 − 𝑒−0.0325)
 = 30.2719  

 



𝑖𝑖𝑖) 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑙𝑖𝑓𝑒 𝑎𝑔𝑒𝑑 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 36 𝑤𝑖𝑙𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑒 𝑡𝑜 𝑎𝑔𝑒 45

→   𝑝369
    

 𝑝369
 = 𝑒− ∫ 0.0325 𝑑𝑡

9

0 = 𝑒−0.02925 = 0.7464 = 74.6%  ~ 75%   

 

𝑖𝑣) 𝑇ℎ𝑒 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑎𝑔𝑒 𝑥 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒 𝑇 𝑜𝑓 𝑎 𝑛𝑒𝑤 𝑏𝑜𝑟𝑛 𝑏𝑎𝑏𝑦        

    

𝑝0 = 𝑥
 0.5 , 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑇 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏. 𝑜𝑓 𝑝0 = 𝑥

 0.5  

 𝑝0 = 𝑥
 𝑒−𝜇𝑥, ∴    𝑝0 = 0.5 =  𝑥

 𝑒−0.0325𝑥   

 0.5 =  
 𝑒−0.0325𝑥   

𝑇𝑎𝑘𝑖𝑛𝑔 log →  𝑙𝑛0.5 =  −0.0325𝑥  

𝑙𝑛0.5

−0.0325
= 𝑥  

𝑥 = 21.3276 ~ 21.33  

 

Q5] 

 i) Gompertz Law is a suitable model for human mortality for middle to older ages say 35 and over.   

There is evidence that the Gompertz Law breaks down at very advanced ages and therefore 35 to 90 years 

 is acceptable.    

 

 

 𝑖𝑖) 𝑤𝑒 𝑘𝑛𝑜𝑤 that  𝑝𝑥𝑡
 = 𝑒− ∫ 𝜇𝑥+𝑠

𝑡 

0
𝑑𝑠 

  𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝜇𝑥 = 𝐵𝑐𝑥 

 𝑝𝑥𝑡
 = 𝑒− ∫ 𝐵𝑐𝑥+𝑠  

𝑡 

0
𝑑𝑠 ,      𝑐𝑥+𝑠  =   𝑐𝑥 𝑒𝑠𝑙𝑜𝑔𝑐   

 ∫ 𝐵𝑐𝑥+𝑠  

𝑡 

0

𝑑𝑠 =  ∫ 𝐵𝑐𝑥  𝑒𝑠𝑙𝑜𝑔𝑐  

𝑡 

0

𝑑𝑠 =
𝐵𝑐𝑥

log 𝑐   
 [𝑒𝑠𝑙𝑜𝑔𝑐] 0

𝑡  



𝐵𝑐𝑥

log 𝑐   
 [𝑒𝑠𝑙𝑜𝑔𝑐] 0

𝑡 =  
𝐵𝑐𝑥

log 𝑐   
 [𝑐𝑠] 0

𝑡 =  
𝐵𝑐𝑥

log 𝑐   
 [𝑐𝑡 − 1] 0

𝑡  

 ∴ 𝑝𝑥𝑡
 =   𝑒(log  𝑔𝑐𝑥[𝑐𝑡−1]  = 𝑒(log  𝑔)𝑐𝑥(𝑐𝑡−1)

  

 𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝑔 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 log 𝑔 = −
𝐵

log 𝑐
 

 

Q6] 

𝑖) 𝑇ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑙𝑖𝑒𝑠 𝑡𝑜 𝐹𝑒𝑚𝑎𝑙𝑒 𝑆𝑚𝑜𝑘𝑒𝑟 𝑎𝑔𝑒𝑑 30 𝑎𝑡 𝑒𝑛𝑡𝑟𝑦 

𝑖𝑖)
ℎ𝑗(𝑡)

ℎ𝑖(𝑡)
 =  

𝑒−0.05

𝑒0.1
= 0.86070 

ℎ𝑒𝑟𝑒, 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑙𝑒 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑔𝑒𝑑 30 𝑎𝑡 𝑒𝑛𝑡𝑟𝑦 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑒𝑚𝑎𝑙𝑒 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑔𝑒𝑑 40  

𝑤𝑒 𝑘𝑛𝑜𝑤, 𝑆(𝑡) = 𝑒− ∫ ℎ(𝑠)𝑑𝑠
𝑡

0   

∴ 𝑠𝑗  (𝑡) = (𝑠𝑖(𝑡) )0.86070 

𝑡ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  𝑠𝑗  (𝑡) > 𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 

𝑖𝑖𝑖) 
ℎ𝑗(𝑡)

ℎ𝑖(𝑡)
 =  

𝑒0.2

𝑒0.05
= 1.161  

𝐻𝑒𝑟𝑒, 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑙𝑒 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑔𝑒𝑑 30 𝑎𝑡 𝑒𝑛𝑡𝑟𝑦 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑙𝑒 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑔𝑒𝑑 40 𝑎𝑡 𝑒𝑛𝑡𝑟𝑦.. 

𝑤𝑒 𝑘𝑛𝑜𝑤, 𝑆(𝑡) = 𝑒− ∫ ℎ(𝑠)𝑑𝑠
𝑡

0   

 𝑠𝑗  (𝑡) = (𝑠𝑖(𝑡) )1.161 

𝑡ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  𝑠𝑗  (𝑡) > 𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0  

 

Q7] 

i) The most appropriate rate interval to use (for lives classified x) is the policy 

year rate interval starting on the policy anniversary where lives are aged x 

next birthday.  



The reason is that this corresponds to the definition of the deaths and the rate 

is more sensitive to errors in approximation of the numerator than the 

denominator.  

The average age at the start of the rate interval is  𝑥 −
1

2
   assuming that 

birthdays are uniformly distributed over the policy year.  

𝑖𝑖) We will use the following symbols : 

𝑃𝑥,𝑡 ∶  to represent the in force at time t from the 1 January 1997 classified x 

next  

 birthday on policy anniversary nearest to time t  

𝜃𝑥,𝑡 ∶  to represent the deaths in the calendar year 1997 aged x next birthday 

on policy  

 anniversary (= age next birthday at entry plus curtate duration at date of 

death)  

 before death  

𝐸𝑥, 𝐸𝑥
𝑐 ∶ to represent the initial and central exposed to risk respectively of lives 

age x  

 last birthday on previous policy anniversary.  

𝑃𝑥(𝑡) ∶  to represent the in force at time t from the 1 January 1997 classified x 

next  

 birthday on the policy anniversary preceding time t.  

𝑁𝑜𝑤 𝑃𝑥(𝑡) =
1

2
 (𝑃𝑥,𝑡 + 𝑃𝑥+1 ,𝑡 ) 

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑝𝑜𝑙𝑖𝑐𝑦 𝑎𝑛𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  

𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑦𝑒𝑎𝑟.  



𝐸𝑥
𝑐 =  ∫ 𝑃𝑥(𝑡)𝑑𝑡

10

0

 =  
1

2
  ∑[𝑃𝑥(𝑡) + 𝑃𝑥(𝑡 + 1)]

9

𝑡=0

  

𝑖𝑛𝑓𝑜𝑟𝑐𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑒𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑏𝑒𝑡𝑤𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 

𝐸𝑥 = 𝐸𝑥
𝑐 +

1

2
 ∑ 𝜃𝑥,𝑡

10

𝑡=0

  

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑖𝑛 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑒𝑎𝑡ℎ𝑠 𝑜𝑐𝑐𝑢𝑟 𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑙𝑓𝑤𝑎𝑦 

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 𝑦𝑒𝑎𝑟 

 

Q8] 

i) Types of censoring presents: 

1. Type I censoring present because the study ends at a predetermined  

duration of 45 days.  

2. Type II censoring is not present because the study did not end after a  

predetermined number of patients had died.  

3. Random censoring is present because the duration at which a patient 

left  

hospital before the study ended can be considered as a random variable.  

4. Right Censoring is present for those lives that exit before the end of  

investigation period 

ii) The censoring is likely to be informative. 

The patients who died were probably recovering less well that patient who  

discharged from the hospital. 

If they had not died, they would likely to remain in the hospital for longer than  

those who were not censored. 

 

iii) The Kaplan-Meier estimate of the survival function is estimated as follows: 

 



 

 

 

 

𝑡𝑗  𝑛𝑗  𝑑𝑗 𝑐𝑗 𝜆𝑗 1 − 𝜆𝑗    S(t)  

       
0 13 0     
5 13 1 0 0.0769 0.9231 0.92 
7 12 1 0 0.0833 0.9167 0.85 
14 11 1 2 0.0909 0.9091 0.77 
28 8 1 2 0.1250 0.8750 0.67 
35 5 1  0.2 0.8 0.54 
       
       

 

So, the value survival function at end of investigation period is 0.54 

Assumptions: 

- The censoring happens just after the death 

- Ignoring the discharge on any other ground except recovery from illness 

- Ignore any admission period before the start of investigation [4] 

iv) Comments: 

1. The survival of a patient from the infection who given treatment is 

around 50% in light  

of the answer in c_j above. 

2. However, the hospital excluded the number of deaths who died within 

two weeks of  

observation period. 

3. It also ignores the admission pre investigation period 

4. It is assuming that the censored patient at the end of investigation will 

survive for sure. 

5. Also ignoring the patients being discharged on any other ground like 

shifting to  



another hospital etc. 

6. It claims that 8 out of 10 patients who responded the treatment beyond 

two weeks  

would survive. 

7. So, the claims have to be viewed with respect to above considerations.  

 

 

 

Q9] 

𝑎) 𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑈𝐷𝐷 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

 

∫ 𝑡𝑝𝑥  𝑑𝑡 =
1

0

  ∫ (1 − 𝑡𝑞𝑥)𝑑𝑡 =  
1

0

 [𝑡 − 0.5𝑡2 𝑞𝑥 ]
1

0
 =   1 − 0.5𝑞𝑥  

𝑞𝑥 =  0.3 , 𝑤𝑒 ℎ𝑎𝑣𝑒  

𝑚𝑥 =
0.3

1 − 0.15
   

 

𝑏)𝑈𝑛𝑑𝑒𝑟 𝐶𝐹𝑀 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

∫ 𝑡𝑝𝑥  𝑑𝑡 =
1

0

  ∫ 𝑒−𝜇𝑡  𝑑𝑡 = 
1

0

1

𝜇
 (1 − 𝑒−𝜇) = 𝑞𝑥

𝜇
  

𝑠𝑜, 𝑚𝑥 = 𝜇 =  − ln(1 − 𝑞𝑥)  = 0.356675  

 

 

Q10] 

i) Under the Cox model each individual’s hazard is proportional to the 

baseline hazard, with the constant  

of proportionality depending on certain measurable quantities called co-

variates. Hence the model is  

also called a proportional hazards model.  

 

Q11] 

i) Consider the durations tj at which events take place. 



Let the number of deaths at duration tj be dj and the number of insects still at 

risk of death at duration  

tj be nj. 

At tj = 1, S(t) falls from 1.0000 to 0.9167. 

 𝑆(𝑡) =   ∏ (1 − 𝜆𝑡𝑗≤𝑡 (𝑡𝑗))   = 0.9167(1- λ(3)) 

𝑤𝑒 𝑚𝑢𝑠𝑡 ℎ𝑎𝑣𝑒 0.9167 = 1 − 𝜆(1), 𝑠𝑜 𝑡ℎ𝑎𝑡 𝜆 (1) 𝑖𝑠 0.0833 

 𝑠𝑖𝑛𝑐𝑒 𝜆(1) =
𝑑1

𝑛1
 , 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒  

𝑑1

𝑛1
= 0.0833  

and, since all 12 insects are at risk of dying at tj = 1, we must therefore have 

d1 = 1 and n1 = 12. 

Similarly, at tj = 3, we must have 0.7130 = 0.9167(1 − 𝜆(3)) 

𝜆 (3)  =
0.9167 − 0.7130

0.9167
= 0.222 =

𝑑3

𝑛3
 

 

 

Since we can have at most 11 insects in the risk set at tj = 3, we must have d3 

= 2 and n3 = 9.  

Similarly, at tj = 6, we must have 0.4278 =  0.7130(1 − 𝜆(6)) 

𝜆 (6)  =
0.7130 − 0.4278

0.7130
= 0.4 =

𝑑6

𝑛6
 

Since we can have at most 7 insects in the risk set at tj = 6, we must have d6 = 

2 and n6 = 5. 

Therefore 2 insects died at duration 3 weeks and 2 insects died at duration 6 

weeks. 

t n d c 𝜆(𝑡) S(t) 
0 12 0  0 1.000 
1 12 1 2 0.833 0.9167 
3 9 2 2 0.22 0.7130 
6 5 2 3 0.4 0.4278 



iii) Summing up the number of deaths we have total deaths = d1+d3+d6= 

1+2+2= 5. 

Since we started with 12 insects, the remaining 7 insects’ histories were right 

censored.  

  

Q12] 

i) Gompertz Law: 

Gompertz Law is an exponential function, and it is often a reasonable 

assumption for middle  

and older ages. It can be expressed as follows: 

 𝜆𝑥 = 𝐵𝑐𝑥 ; 𝑤ℎ𝑒𝑟𝑒 𝜆𝑥 𝑖𝑠 𝑎 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑚𝑎𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑡 𝑎𝑔𝑒 𝑥  

 

𝑖𝑖) 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔  𝐵 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2  ; 𝑖𝑛𝑡𝑜 𝑔𝑜𝑚𝑝𝑒𝑟𝑡𝑧 𝑚𝑜𝑑𝑒𝑙 

 𝜆𝑥 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2  ∗ 𝑐𝑥 ; 𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑥 𝑎𝑠 𝑎 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑐𝑒 50𝑡ℎ 𝑏′𝑑𝑎𝑦 

 𝑇ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑐𝑎𝑛 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑏𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 𝑖𝑛𝑡𝑜 2 𝑝𝑎𝑟𝑡𝑠 

 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2   , 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑐𝑥, 

𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 

 𝑠𝑜, 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑏𝑒𝑡𝑤𝑛 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑𝑠 𝑓𝑜𝑟 𝑎𝑛𝑦 2 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑠𝑜 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 

 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑎𝑧𝑎𝑟𝑑 𝑚𝑜𝑑𝑒𝑙. 

𝑖𝑖𝑖) 𝑇ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑚𝑜𝑑𝑒𝑙 𝑟𝑒𝑙𝑎𝑡𝑒𝑠 𝑡𝑜 𝑛𝑜𝑛 𝑠𝑚𝑜𝑘𝑒𝑟 𝑓𝑒𝑚𝑎𝑙𝑒 

 𝑖𝑣) 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑓𝑒𝑚𝑎𝑙𝑒 𝑐𝑖𝑔𝑎𝑟𝑒𝑡𝑡𝑒 𝑠𝑚𝑜𝑘𝑒𝑟 

𝑋1 = 0  𝑎𝑛𝑑 𝑋2 = 1 𝑎𝑚𝑑 𝑥 = 4 

 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑎𝑡 𝑎𝑔𝑒 54 𝑖𝑠 ∶ 

𝜆𝑥 = 𝑒𝛽0+𝛽1.0+𝛽2.1 ∗ 𝑐4 

= 𝑒−4+0.65 ∗ 1.054 



= 0.0351 ∗ 1.2155 

= 0.04266 

𝑣) 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑛 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑠 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 

 𝜆𝑠 = 𝑒𝛽0+𝛽1.𝑋1 ∗ 𝑐𝑠 

𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑛 𝑠𝑚𝑜𝑘𝑒𝑟 𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦:  

 𝜆𝑡 ∗ = 𝑒𝛽0+𝛽1.𝑋1+0.65 ∗ 𝑐𝑡 

𝑖𝑓 𝑡ℎ𝑒 𝑠𝑚𝑜𝑘𝑒𝑟′𝑠𝑎𝑛𝑑 𝑛𝑜𝑛 𝑠𝑚𝑜𝑘𝑒𝑟′𝑠ℎ𝑎𝑧𝑎𝑟𝑑𝑠 𝑎𝑟𝑒 𝑠𝑎𝑚𝑒 , 

 𝑡ℎ𝑒𝑛 𝜆𝑠 =  𝜆𝑡 ∗ 

𝑖. 𝑒. 𝑒𝛽0+𝛽1.𝑋1 ∗ 𝑐𝑠 = 𝑒𝛽0+𝛽1.𝑋1+0.65 ∗ 𝑐𝑡 

𝑖. 𝑒. 𝑐𝑠 = 𝑒0.65. 𝑐𝑡 

𝑖. 𝑒. 𝑐𝑠−𝑡 = 𝑒0.65 = 1.9155 

𝑠𝑖𝑛𝑐𝑒, 𝑐 = 1.05  

ℎ𝑒𝑛𝑐𝑒, 1.05𝑠−𝑡 = 1.9155 

 𝑠𝑜 𝑠 − 𝑡 =
ln(1.9155)

ln(1.05)
 = 13.32  

Hence, when the two hazards are equal, the non-smoker is approximately 13  

years older than the smoker. 

 

Q13] 

i) Let P’x(t) be the number of policies inforce aged x nearest birthday at time t 

.  

 Also, let Px(t) be the number of policies inforce aged x last birthday at time t 

 Let  𝐸𝑥
𝑐  refers to the central exposed to risk at age label x respectively. 

 𝐸𝑥
𝑐  =  ∫ 𝑃′𝑥(𝑡)

2

𝑡=𝑜 

 𝑑𝑡  

  



𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑃56
′ (𝑡)𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 (2015,2016)𝑎𝑛𝑑 (2016,2017) 

𝑤𝑒 𝑐𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  

 𝐸𝑥
𝑐

1

2
∗ 𝑃56

′ (2015) + 𝑃56
′ (2016) +

1

2
𝑃56

′ (2016) + 𝑃56
′ (2017)  

=
1

2
𝑃56

′ (2015) + 𝑃56
′ (2016) +

1

2
𝑃56

′ (2017) 

Since, the number of policyholders aged label 56 nearest birthday will be 

between 55.5 and  

56.5 i.e. between age label 55 last birthday and 56 last birthday. Assuming 

that the  

birthdays are uniformly distributed over the calendar year: 

𝑃56
′ (2015) =

1

2
 (𝑃55

′ (2015) + 𝑃56
′ (2015)) = 20050 

𝑃56
′ (2016) =

1

2
(𝑃55

′ (2016) + 𝑃56
′ (2016) = 20800 

 𝑃56
′ (2017) =

1

2
(𝑃55

′ (2017) + 𝑃56
′ (2017) = 19250 

𝐸56  
𝑐 =

1

2
∗ 20050 + 20800 +

1

2
∗ 19250 = 40450 

𝜇56 =
𝑑56

𝐸96  
𝑐 = 0.0341   

 

𝑑𝑒𝑟𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑔𝑒 57 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒 

 𝑃57
′ (2015) =

1

2
 (𝑃56

′ (2015) +  𝑃57
′ (2015)) = 19850 

𝑃57
′ (2016) =

1

2
 (𝑃56

′ (2016) + 𝑃57
′ (2016)) = 20900 

𝑃57
′ (2017) =

1

2
 (𝑃56

′ (2017) + 𝑃57
′ (2017)) = 17500  



𝐸57  
𝑐 =

1

2
∗ 19850 + 20900 +

1

2
∗ 17500 = 39575 

𝜇57 = 0.03588 

𝑖𝑖) 𝑞55.5 = 1 − 𝑒𝜇56 = 0.0335 

 𝑞56.5 = 1 − 𝑒𝜇57 = 0.0352 

 

 

Q14]  

i) The hazard function for getting married is given by: 

(t,Z) = 0(t)exp[0.3 Z1 + 0.2 Z2 + 0.3 Z3 + 0.5 Z4 – 0.1 Z5 + 0.7 Z6 + 0.5 Z7 – 

0.4 Z8] 

Where 

0(t) = baseline hazard at time t since looking for the life partner. 

Z = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) 

Z1 = 1 if female, 0 if not. 

Z2 = 1 if location = Non Metro, 0 if not 

Z3 = 1 if profession = Service, 0 if not 

Z4 = 1 if profession = Business, 0 if not  

Z5 = 1 if profession = Social Service, 0 if not 

Z6 = 1 if Age Band = 20-25, 0 if not 

Z7 = 1 if Age Band = 25-30, 0 if not. 

Z8 = 1 if Age Band = 35-40, 0 if not. [2] 

ii) People most likely to stay single with the lowest hazard function. 

The probability that a person who has been looking for a life partner for one 

year will stay single for  

next 2 years is: 



𝑒− ∫ 𝜆(𝑡,𝑧)𝑑𝑡
3

1
   

If the person is a female, profession as a social service and aged 37, the 

probability is: 

𝑃𝐹 = exp[−𝑒0.3𝑧1  −0.1𝑧
5

−0.4𝑧
8

  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 | 3
1

𝜆0(𝑡)𝑑𝑡] 

Let A =  𝑒^ ∫ 𝜆0(𝑡)𝑑𝑡
3

1
 

𝑃𝐹 = 0.3  

𝐴 = 0.2298  

Q15]  

i. Advantages of central exposed to risk.  

Two advantages of central exposed to risk over initial exposed to risk are:  

1. The central exposed to risk is simpler to calculate from the data typically  

available compared to the initial exposed to risk. Moreover, central exposed  

to risk has an intuitive appeal as the total observed waiting time and is easier  

to understand than the initial exposed to risk.  

2. It is difficult to interpret initial exposed to risk in terms of the underlying  

process being modelled if the number of decrements under study  

increase or the situations become more elaborate. On the contrary, the  

central exposed to risk is more versatile and it is easy to extend the concept  

of central exposed to risk to cover more elaborate situations. 

ii. Calculation of exposed to risk.  

Rita 

Rita turned 30 on 1 October 2009, when she was already married. She died  

on 1 January 2010, 3 months after her 30th birthday.  

Thus, Rita‟s contribution to central exposed to risk = 3 months 

And contribution to initial exposed to risk = 1 year 



Sita 

Sitaturned 30 on 1 September 2011, when she was already married. Time  

spent under investigation, aged 30 last birthday by Sita was 1 September  

2011 – 31 August 2012.  

Thus, Sita‟s contribution to both central and initial exposed to risk is 1 year.  

Nita 

Nita turned 30 on 1 December 2009 and married 2 months later. Therefore,  

she joined the investigation of married women on 1 February 2010. She  

divorced 9 months later, when she would be censored from the investigation  

of married women.  

Thus, Nita‟s contribution to both central and initial exposed to risk is 9 

months.  

Gita 

Gita got married on 1 June 2011, at which time she was already past her 31st 

birthday. Therefore, she has spent no time during the investigation period as  

a married woman at age 30 last birthday.  

Thus, her contribution to both central and initial exposed to risk is nil.  

iii. Total exposed to risk.  

Hence, total exposed to risk is:  

Central exposed to risk = 0.25 + 1 + 0.75 + 0 = 2 years. 

Initial exposed to risk = 1 + 1 + 0.75 + 0 = 2.75 years 

From the results above, it can be seen that the central exposed to risk is 2  

years and the initial exposed to risk is 2.75 years. The approximation would  

suggest that the initial exposed to risk should be 2.5 years. However, this is 

not a good approximation for the data provided as the approximation is based  

on the assumption that deaths would be evenly spread and thus can be  



assumed to occur half way through the year, on average. This also relies on  

an implicit assumption of a reasonably large data set. In the data above, there  

were only 4 lives, which is not statistically significant. Moreover, there was  

only one death, which occurred 3 months after the 30thbirthday. As a result of  

the statistical sparseness in the data, the approximation is seen not to work  

very well. 

 

  



 


