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Question 1]

Answer:
6
Writing the state space in the order {Bid (B), Offer (O)}, the generator matrix is:

B[—l by J

olu -n)

(i1)

The holding times are exponentially distributed with parameter A in state B, and 1 in state O.
(1i1)

¢ B3
P2l

BB BO
=—h B Ap P

0 _BO - B o
Erﬂ ="'“'rPsB _I'l'rPsB-

(iv)
We have a two-state model so:

BB BO
PPy PPO=1.

5

Substituting:

0
E rPsBB Z'}“'rﬂBB +u(l- rPsBB):

0
E[e?{p((l +u}r)-fPsBB:| = pexp((h +p)t);
and hence

exp((h+ )., PP8 = _E
A+

.exp((A +u)t) + constant.
u

Since the process is in state Bid at time s (i.e. 1 =0),

. A
the constant 1s ,
L+ A

and thus ,P;RB: B A .exp(—(h+p)t).
A+p A+p




Question 2]
Answer:

@
Done

(i)

%  (t)=-0.3P,(t)+0.1P (t)+0.3P,(t)

%Pﬂ(ﬂ =0.2P_(t)-0.5P (t)+0.1P,(t)

d
EP‘Ac(r) =0.1P,,(t)+0.4P, (t)-0.4P, (t)

(1i1)
EITHER

To stay in state 4 the equation reduces to:

4 p (£)=-03P_(¢)
dt Ad AA

which has solution

P_(t)=exp(-0.3t)

So for 1= 2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 +0.2)*2 =0.6

0.6 0
0.6
P(P0i(0.6)=0)= ET
—e™¢ =0.5488
(iv)

The only paths under which the third jump is into state C are BAC, CAC
and CBC.
The probabilities of each jump are given by the ratio of the transition rates.

So, the probabilities for each path are:




211 2
BAC=".". =
353 45
131 1
cACc=_.". =
343 12
114 1
CBC==.—.—=—
34’5 15

Sum = 7/36 = 0.194.

Question 3]

Answer:

@)

(ii)

Using the Markov assumption

1. Never
Taken
Nimble

h

4, Death by
Heart Disease

the Chapman Kolmogorov equation is

2. Taking
Nimble

3. No Longer

Taking
Nimble

I

5. Death
other

34 _ 31 14 32 24 33 34 34 44 35 54
dret Px =t Py arPxat +r Py Pyt +r Py i Pyt +r Py Pyt %t Py dr Pt -




: 54 31
Since dt Pyt =t Py =0

34 32 24 33 34 34 +4
dt+t Px =t Px d@tPx+t Tt Px dtPyx+r T1r Px atPxsr-

Given that P:irr =1
And assuming that, for small dt

drpgw = Hgﬂm +o(dr) i#]

where lim o(dr) =

0 ]
di—0 dt

then substituting, we have

34 32 .24 33 34 34
dr+t Py’ =t Px Myprdl 4 Dy Wo di +, Py +o(dt)

4 34 32, 24 33 34
so that drst Py —t DX =¢ Py Wyi At +; pronss di +o(dr)

Question 4]
Answer:
@
The mean is equal to the parameter, so there are 3 calls per hour.
(i1)
The process is memoryless so the fact that Fred has not had a call for

15 minutes is irrelevant.
Expected time until next call is 20 minutes.

(iii)
This is the probability of zero calls in time 0.5 hours.
Using p, (1) = e My £

OR

-1.5 0
1.5
Since py(0.5) = ——21 (;1 )

P0(0.5)=e71° =0.2231 .

(iv)




The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.
Per hour this is 3 calls times 7 minutes = 21 minutes.

So, the probability that the phone is engaged is 21/60 = 0.35.

Question 5]
Answer:
®
EITHER
Using the Markov assumption,

OR

The Chapman Kolmogorov equation is

Py (X0 4 A1) = Py (x.8) Py (1.7 + )
+ P (XD P (1 1+ ) + P (3.0) Py (2.1 + dF)

But pry (7.t +df)=0 or other explanation why path through D can be
ignored

So:
Pey (X1 +d1) = Prp (X 1) P (1.8 +d0) + P (x.1) Py (7.1 + dE)
Assuming that, for small dt

B (t.t+d)= ?Lﬂ(r)a‘Ho(dr) e

pi(t.t +dt) =14 k; (1)dt + o(dt)

OR
pii(t.t+df)=1=> i ()dt+o(dt)

J=

m 200 _

where the As are the mnstantaneous transition rates and a0 dr

0,
then substituting. we have

Py (x.t+df) = ppy (x.0)(1=c(f)df =pu(f)dt) + pys (x.0)p(. G, )+ o(dt)
so that

Py (x.1+d6) = gy (6.0) = pygg (x.O)(=0(0) = p(r))elt
+pys (x,Op(t, C;)dt + o(dr)

and hence

d . pap(x.t+df)— pgy(x.1)
— c.f)= hm

g P (1) = lim, dr

= pg (x.1)(=o() = (1)) + pys (x.1)p(t.C;)




(i)

The equation simplifies when considering p4(f) to

d
—p_(0.t)=—(o(t)+u(t))p_ (1)
dt” B m

1

d
- - 0.1)=-— t))=—In f) .
p_(O,f}drpEf( )=—(a(t)+ u(1)) 7 P}E()
HH

Integrate both sides:

ey, ™

[In pﬁ(o,f}]; = [ ~(o(s) +u(s))ds

=0

as pH—H(0}=1

T
Pz (0.0 =exp—( [ (o(s) +u(s))ds)
5=0

Question 6]
Answer:

The similarities and differences between Markov Chain, Markov Jump Chain and Markov Jump
Process are as follows:

1. All the mentioned processes have a discrete state space.

2. Markov chain and Markov jump chain operates in discrete time but a Markov jump
process operates in continuous time.

3. All the mentioned processes satisfy the Markov property which is that the future value of
the process can be determined from its current state alone, without reference to its past
history.

4. Markov jump chain obeys the Markov property and behaves as a Markov chain except
when the jump encounters an absorbing state.

5. Markov jump chain and Markov chain are expressed in terms of probabilities whereas
Markov Jump process is expressed in terms of rates.

6. Markov Chain can have loops in each state, Markov jump process cannot and the Markov
Jump chain only has loops on absorbing states.

Question 7]
Answer:
@)

The maximum likelihood estimates of the transition intensity from state i to state j is the number
of transitions from state 1 to state j divided by the total waiting time in state i.




To estimate the transition intensities exactly we therefore need
the total time spent in each state
OR
entry and exit times for each individual for each state,
and the total number of transitions of each type made.
(i1)
Define p,,(s.t) to be the probability of being in state Active at time s+ if Active at
time s.

Then EITHER

0
5 P (5,8)==p 44(s. D1

X
—pur(s.D=p .00,
Py

OR

%p(s.r) = p(s.t)M

where M =[ Ou E] in order Active, Theft,

OR

Integrated forward equations:

pasts.=exp( =y

H=5

T
PAI[5=-’}=‘|'“:0P‘L1(511-’)-H-11’f“-

1) Measure from time zero i.e., s = 0 and drop s from notation.

EITHER




%tm(mm _—

hence p ,(t) = exp(—ut + C).
As p,,(0)=1,C=0,so0

P 44(1) = exp(-ur)
A claim occurs with cost £C if moves to state “Theft Claim”.
Hence the expected cost is C (1 exp(-uT))
OR

Solving for p 7., we have

% Par(®)=p(Ou=>0-p47(t))U (as the model has only two states).

Using an integrating factor, we can write
d
5[6Xp(uf)p‘4r(f)} =uexp(ur),

exp(lLf) p 47 () = exp(lLr) —1,

Par () =1—exp(—1)
and hence the expected costis C(1—exp(—u7l)).

OR
Solving the integrated forward equation

P (T)= J; exp(~ps)uds =[—exp(us)]; =1-exp(-u7).

and hence the expected costis C(1—exp(—u7l)).

(iii)




1
Active Theft
policy claim
A

(iv)
J
We now have <p44(1) =P u(IU+A).
So p () =exp(-(L+A)).

0
We want e pyr(®)=p (On=pexp(—(U+1))).

T
N - _u
Solving thi d f) = —(L+ )t =——(1—exp(—(L+A)T)) .
olving this produces p 4 (f) (“+1)8XP( (1 )))0 oY) u
So claims become H C(l—exp(—(L+A)T)).
L+A
Question 8]
Answer:
@)
0,1,2,3,4....}
(i1)
s s A A
ONOmOmOmO==
T T Cn T n n
(iif)

Generator matrix




Lives 0 1 2 3 4

0 0 0 0 0
o —(u+a) A 0 0
0 vl —(u+4) A 0
0 0 1l —(u+21) A
0 0 0 n —(u+2)

(iv)
EITHER

If a Markov jump process Xt is examined only at the times of transition, the
resulting process is called the jump chain associated with Xt

OR

A jump chain is each distinct state visited in the order visited where the time
set is the times when states are moved between.

)

Lives 0 1 2 3 4
1 0 0 0 0 etc.
u/(u+d) 0 Au+d) 0 0
0 u/(u+i) 0 A(u+d) 0
0 0 /! (u+2) 0 A(u+d)
0 0 0 u/(u+2a) 0
etc.
(vi)

Question 9]
Answer:
@)
A generator matrix is a matrix whose entries signify the transition rates from one state to every
other in a Markov Jump process.

Each row of the generator matrix sums up to zero since p;; = — X # j Hixj




(i1)
Required state space is {0, 1, 2}, since the 2 policies in force can still be in force at a future time,
either of the policies can be claimed or ‘lapsed’ or both can expire at a future time.

(i11)

10 21
1 M )

Question 10]

Answer:
@)

d
— Pt =—20x P ()

d
= E[m%{r)] =2t

= InP—(s)= —s” + constant

We know P_E(O) =1, hence constant =0

Hence, P ;(s)= exp ®

(i1)
P(in first visit to B at time T in state A at t = 0)




T - :
= J.o P(remains in A to time 5)
x P(transition to B in time s, 5 + ds)

x P(remains in B to time 7) ds

T
= J‘ P—(s)x 25 x P=(5,T)ds
=0

5

Using the result from part (i) and the similar result for Pzz with boundary

condition Pgg(s, s) = 1, this gives us:

(iii)
a) The sketch should be shaped like:

Probability

Time

e Initially probability increases from 0 at T = 0, and accelerates as the
transition rate from A to B increases.

e However, as transitions increase, it becomes more likely that the
process has already visited state B and jumped back to A. Therefore,
the probability of being in the first visit to B tends (exponentially) to
Zero.

b) Differentiate to find turning point:

dr .2 5 s 2
—[er xr‘”}=2rxeI —2 xe
dt

set derivative equal to zero

e x2x(1-£)=0

implies =1 for a positive solution
and, from above analysis, this is clearly a maximum.




Question 11]

Answer:

@

Let Nt denote the number of claims up to time t. Since the Poisson process has stationary
increments, we may take t = 0, so that the required conditional distribution is

P(Ly<y, N,=1)

P(Ty<y|N, =1)= POV, 1)
=

P( N,=1 N —Af:[])

But N, — N, is independent of IV,
and has the same distribution as N_,.

Thus the right hand side above equals

(i e—}..j' ) e—?..(s—_l'} _y

hse ™ 5

&

which is the cdf of the uniform distribution on [0, s].
(i1)
Since holding times are independent, each having an exponential distribution, their joint density

1S

—h(fp i+ )
L'e (a+ "l
(a0

(111)
We have, as in part (i),

P(N;=k, N,=n)
P(_Nr = n)

P(N,=k|N,=n)=

_P( Ny=k. N,-N,=n-k)
P(N, =n)

Using again that the Poisson process has stationary and independent
increments, and that the number of claims in an interval [0, t] is Poisson ( t),
we derive from above that




e—ls{}d)k ‘ e—l(f—s)l}r—k{r - S)n—;(

k! (m—k)!

P(N,=k|N,=n)= oy

n!

_Q-;‘J;’L”Sk(f—s)”-k n
ki(n—k)! g My

_n! sE(t—s)k
kE'(n—-k)! -k

MCICN

which is binomial with parameters » and s/t.




