SRM Project

Name: Ishika Shah Roll No.: 422

Q1. Read in the data file as a data table & fill in the entries for the CRUDE column in your table.

```
data = read.csv(file.choose())
data
str(data)
dim(data)|
data$CRUDE = data$DEATHS/data$ETR
data
```

Q2) Use Gompertz law to fill entries in the GRADUATED column in the data.

```
gl = lm(log(CRUDE)~AGE, data)
summary(gl)

B = exp(coef(gl))[1]
C = exp(coef(gl))[2]

data$GRADUATED = round(B*C^data$AGE, 6)
data
```

Q3) Check for smoothness by applying the third differences to the crude and graduated rates and comment on your results.

```
diff1 = function(x)x[-1]-x[-length(x)]
crude_diff = round(diff1(diff1(data$CRUDE)))*10^6,0)
crude_diff
crude_data = round(diff1(diff1(data$GRADUATED)))*10^6,0)
crude_data
third_diff = cbind(data$AGE[data$AGE<=72], crude_diff, crude_data)
third_diff</pre>
```

The third differences of the crude rates are much greater in magnitude than the graduated rates.

We can see that from the table that the third differences of the crude rates are much larger in magnitude (max = 19024) and progress is irrational.

This is to be expected, since they are calculated directly from the deaths, which include significant random elements.

The third differences of the graduated rates are all very small and progress regularly.

This is to be expected, since they have been smoothened using a simple parametric formula with just two parameters.

Q4) Calculate the values in EXPECTED and ZX values in the table. Hence, perform a chi-squared test to check goodness of fit between DEATHS and EXPECTED. You should specify the degrees of freedom used.

```
data$EXPECTED = round(data$ETR*data$GRADUATED,2)
data$ZX = round((data$DEATHS-data$EXPECTED)/sqrt(data$EXPECTED),3)
data

chisq = data.frame(data$DEATHS, data$EXPECTED)
chisq
chisq.test(chisq)
```

```
AGE
                               CRUDE GRADUATED EXPECTED
    25
         78500
                    24 0.0003057325
                                       0.000238
                                                    18.68
                                                             1.231
         80425
                    24 0.0002984147
                                       0.000265
                                                             0.583
2
3
4
5
6
7
8
9
    26
                                                    21.31
                                       0.000294
    27
28
         81975
                    24 0.0002927722
                                                    24.10
                                                            -0.020
         83725
                    24 0.0002866527
                                       0.000327
                                                    27.38
                                                            -0.646
    29
30
                                       0.000364
         84875
                    72 0.0008483063
                                                    30.89
                                                             7.397
         85075
                    48 0.0005642081
                                       0.000405
                                                    34.46
                                                             2.307
    31
         85275
                   120 0.0014072120
                                       0.000450
                                                    38.37
                                                            13.178
    32
33
                                       0.000501
         86250
                    24 0.0002782609
                                                    43.21
                                                            -2.922
                    72 0.0008252149
         87250
                                       0.000557
                                                    48.60
                                                               357
                    72 0.0008154020
                                       0.000619
                                                    54.66
10
         88300
                                                             2.345
11
    35
36
37
38
         90200
                    24 0.0002660754
                                       0.000689
                                                    62.15
                                                            -4.839
12
13
         92500
                    48 0.0005189189
                                       0.000766
                                                    70.86
                                                            -2.716
         95425
                    24 0.0002515064
                                       0.000852
                                                    81.30
                                                            -6.355
14
         98550
                   168 0.0017047184
                                       0.000948
                                                    93.43
                                                             7.715
                   120 0.0012027061
                                       0.001054
                                                   105.16
                                                             1.447
    39
         99775
16
    40
         99125
                   240 0.0024211854
                                       0.001172
                                                   116.17
                                                            11.489
17
         99200
    41
                   216 0.0021774194
                                                   129.36
                                       0.001304
                                                             7.618
    42
18
       101525
                   144 0.0014183699
                                       0.001450
                                                   147.21
                                                            -0.265
19
    43
       104525
                   120 0.0011480507
                                       0.001612
                                                   168.49
                                                            -3.736
20
       107075
                   24 0.0002241420
                                       0.001793
                                                           -12.124
                                                   191.99
21
22
23
24
    45
       109125
                   216 0.0019793814
                                       0.001994
                                                   217.60
                                                            -0.108
       109425
    46
                                       0.002218
                   360 0.0032899246
                                                   242.70
                                                             7.529
       109075
    47
                   312 0.0028604171
                                       0.002467
                                                   269.09
                                                             2.616
    48
       110175
                   120 0.0010891763
                                       0.002743
                                                   302.21
                                                           -10.481
25
    49 111675
                   168 0.0015043653
                                       0.003051
                                                   340.72
                                                            -9.357
26
    50 112725
                   432 0.0038323353
                                       0.003393
                                                   382.48
                                                             2.532
    51 115250
52 118225
27
                                                            -1.292
                   408 0.0035401302
                                                   434.95
                                       0.003774
28
                   600 0.0050750687
                                       0.004197
                                                   496.19
                                                             4.660
29
    53
       120025
                   702 0.0058487815
                                       0.004668
                                                   560.28
                                                             5.987
30
    54 122150
                   891 0.0072943103
                                       0.005191
                                                   634.08
                                                            10.203
                   513 0.0041254524
31
    55 124350
                                       0.005773
                                                   717.87
                                                            -7.646
32
    56 125750
                   675 0.0053677932
                                                   807.44
                                       0.006421
                                                            -4.661
33
    57
       126350
                   864 0.0068381480
                                       0.007141
                                                   902.27
                                                            -1.274
34
    58 127100
                   837 0.0065853659
                                       0.007942
                                                  1009.43
                                                            -5.427
    59 129350
35
                  1242 0.0096018554
                                       0.008833
                                                  1142.55
                                                             2.942
36
    60 132475
                  1593 0.0120249104
                                       0.009823
                                                  1301.30
                                                             8.086
                  1539 0.0114850746
                                                  1463.95
37
    61 134000
                                       0.010925
                                                             1.961
38
    62 133700
                  1998 0.0149439043
                                       0.012150
                                                  1624.45
                                                             9.268
39
    63
       134375
                  1728 0.0128595349
                                       0.013513
                                                  1815.81
                                                            -2.061
    64 136125
                  2403 0.0176528926
                                                  2045.69
40
                                       0.015028
                                                             7.900
41
42
43
    65 136625
                  1971 0.0144263495
                                                  2283.55
                                                            -6.541
                                       0.016714
    66
       136100
                  2835 0.0208302719
                                       0.018588
                                                  2529.83
                                                             6.067
    67 135750
                  2889 0.0212817680
                                       0.020673
                                                  2806.36
                                                             1.560
44
    68
       134350
                  3348 0.0249199851
                                                  3088.98
                                       0.022992
                                                             4.660
    69 131575
                  4212 0.0320121604
                                       0.025570
                                                  3364.37
                                                            14.614
46
    70 129225
                                       0.028438
                                                  3674.90
                  4428 0.0342658154
                                                            12.423
    71
       128875
                  3915 0.0303782735
                                       0.031627
                                                  4075.93
                                                            -2.521
       130075
                  5103 0.0392312128
                                       0.035174
                                                  4575.26
                                                             7.802
    73 130475
                                                  5104.05
49
                  5454 0.0418011113
                                       0.039119
                                                             4.898
    74 129550
                  6453 0.0498108838
                                       0.043507
                                                  5636, 33
                                                            10.878
                  6453 0.0498686244
                                       0.048386
                                                  6261.15
       129400
                                                             2.425
```

```
Pearson's Chi-squared test
data: chisq
X-squared = 905.22, df = 50, p-value < 2.2e-16
```

Null hypothesis: The graduated rates are the true underlying mortality rates

Alternate hypothesis: Mortality Rate is not consistent with the set of Graduated Mortality Rates

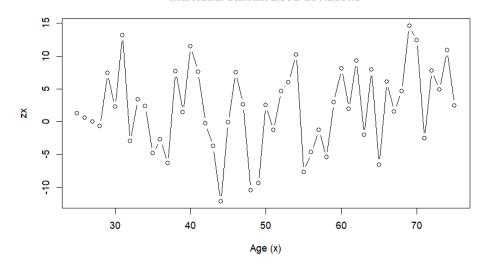
DOF = 50

Since p value < 0.05, we reject the null hypothesis at 5% level of significance, and conclude that the graduated rates are not in line with the actual mortality rates.

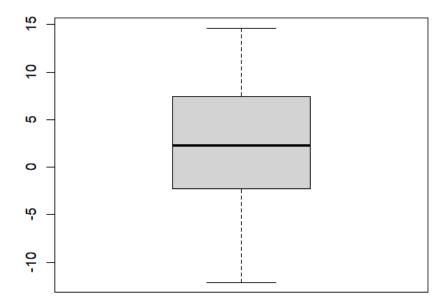
- a. Perform the standardised deviations test on the individual deviations, and comment on the-
- i. Overall shape
- ii. Absolute deviations
- iii. Outliers
- iv. Symmetry
- v. Final conclusion about Null hypothesis
- b. Perform the Signs test and give your conclusion

(Hint: Since m is large, you may use the normal approximation along with continuity correction for this test. You may look up the function *qnorm* and *pnorm* in R for this)

- c. Perform the Cumulative deviations test for the entire age range and give your conclusion.
- d. Perform the Serial correlations test and give your conclusion


```
library(plyr)
install.packages("EnvStats")
library(EnvStats)
plot(data$AGE,data$ZX,type="b",xlab="Age (x)", ylab="zx",main="Individual standardised deviations")
table(cut(data$ZX, breaks = seq.int(from = -20, to = 20, by= 4)))
min(data$ZX)
max(data$ZX)
iqr(data$ZX)
iqr(data$ZX)
boxplot(data$ZX)$out
skewness(data$ZX)
```

a) Individualised standard deviations test


```
> table(cut(data$ZX, breaks = seq.int(from = -20, to = 20, by= 4)))

(-20,-16] (-16,-12] (-12,-8] (-8,-4] (-4,0] (0,4] (4,8] (8,12] (12,16] (16,20]
0 1 2 6 11 12 11 5 3 0
```

Individual standardised deviations


```
> min(data$ZX)
[1] -12.124
> max(data$ZX)
[1] 14.614
> iqr(data$ZX)
[1] 9.754
> boxplot(data$ZX)$out
numeric(0)
> skewness(data$ZX)
[1] -0.1311715
```


- (i) The graph is much wider a standard normal graph, with several values higher than 10.
- (ii) The values of the absolute deviations are much higher relative to the expected value.
- (iii) The lower bound is -12.124 and the upper bound is 14.614. IQR is 9.754. There are no outliers.
- (iv) The Graph is negatively skewed.
- (v) The graduated rates do not represent the underlying mortality rates with accuracy.

b) Signs test

```
> signs_test = sign(data$ZX)
> table(signs_test)
signs_test
-1   1
20  31
> pbinom(31,51,0.5)
[1] 0.9540427
```

H0: There is no bias in the data.

H1: There is bias in the data

We fail to reject the null hypothesis that the data is a true representation of the underlying mortality rates.

c) Cumulative deviations test

```
> ## Cumulative deviations
> observed = sum(data$DEATHS)
> expected = sum(data$EXPECTED)
> z=(observed - expected)/sqrt(expected)
> z
[1] 18.83091
```

H0: Graduated rates are not biased.

H1: Graduated rates are biased.

We reject the null hypothesis and conclude that the graduated rates are biased.

d) Serial Correlations Test

```
> ## Serial correlation
> z1 = data$ZX[1:length(data$ZX)-1]
> z2 = data$ZX[2:length(data$ZX)]
> sctest = cor(z1, z2)
> sctest
[1] 0.1476081
> teststat = sqrt(51)*sctest
> teststat
[1] 1.054133
```

H0: Grouping of signs is absent.

H1: Grouping of signs is present

At 5% significance level test statistic is 1.6449

Therefore, we fail to reject the null hypothesis.