Applications of IT – Basics of R
Assignment No. 2
Shrunkhala Kambale, Section B, roll no 89
Q1.
set.seed(10221)
Random_Sample = rlnorm(1000,5,2.5)
#True quartiles
Q1 = qlnorm(0.25,5,2.5)
Q2 = qlnorm(0.5,5,2.5)
Q3 = qlnorm(0.75,5,2.5)
#Comment
"The differences between the true quartiles & 
empirical quartiles aren’t much. This difference
exists because of the small sample size. The 
difference can be rivalled using a larger sample."
Q2.
Data = mtcars
#a.
Model0 = lm(Data$mpg ~ 1)
#b.
Model1 = lm(Data$mpg ~ Data$wt)
#c.
Model2 = lm(mpg ~ log(wt) + disp, data = Data)
#d.
Summary_Model0 = summary(Model0)
Summary_Model1 = summary(Model1)
Summary_Model2 = summary(Model2)
#R-Squared of Model0
Summary_Model0$r.squared
#R-squared of Model1
Summary_Model1$r.squared
#Adjusted R-squared of Model2
Summary_Model2$adj.r.squared
"Since model 2 has a higher adjusted R-sqaured as compared to the other 2 models
, it is a best fit available to the given data. It explains 82% of the variability
in the responses."
Q3.
set.seed(2919)
s = rnorm(100,5,2.5)
PDF_s = dnorm(s)
Table = data.frame(s,PDF_s)
Mode = Table[which.max(Table$PDF_s),1]
#Thus, the mode = -0.44367
Median = qnorm(0.5,5,2.5)
"Since in the normal distribution mean, mode & median are all equal,
The mode of the true model is 5.
This huge difference can be minimised by using a larger sample"
Q4.
Xi = seq(0,6,1)
Fi = c(739280, 185309, 23349, 1937,114,1,3)
summation_Xifi = sum(Xi*Fi)
lambda_hat = summation_Xifi / sum(Fi)
p = dpois(Xi,lambda_hat)
Expected_frequency = sum(Fi)*p
Expected_frequency
#We observe that some Ei's are less than 5
#Clubbing the last 2 Xi's
new_p = c(p[1:5], p[6]+p[7])
new_Oi = c(Fi[1:5], Fi[6] + Fi[7])
#All the expected frequencies are now above 5
"HO: Data follows poisson distribution
H1: Data does not follow poisson distribution"
chisq.test(new_Oi, correct = F, p = new_p)
"Since the p-value is 86.5%, we do not have evidence to
reject H0. Hence we do not reject the null hypothesis
that the given data follows the poisson distribution."

Q5.
library(MASS)
Animals
data=Animals
#1 relationship between two variables
cor(Animals)[1,2]
#there is negative correlation between body and brain of diffrent species
body=Animals[,1]
brain=Animals[,2]
cor(log(body),log(brain))
#log relationship is stronger than previous relationship
#H0:rho=0.6
#H1:rho=>0.6
#using fishers z transformation test 
n=length(body)
ts=(atanh(cor(log(body),log(brain)))-atanh(0.6))/sqrt(1/(n-3))
ts
pnorm(ts,lower.tail = F)
#since the pvalue is less than 5% we have sufficient evidence to reject ho 
#which implies that rho>0.6
"H0: MU1(body)=MU2(brain)
 H1: MU1(body)>MU2(brain)"
t.test(body,brain,alternative = "greater",var.equal = F)
#since p value is greater than 5% we have insufficient evidence to reject ho 
#var.equal=f because sample variances are not equal 
range(body)
qqnorm(body)
qqline(body,col="red")
qqnorm(brain)
qqline(brain,col="blue")
#after seeing both plots data of body is more likely to follow normal distribution 
#than brain beacuse of outliers are more in brain dataset
#log(bodyweight)~N(3.77,1.5)
plot(log(body),dnorm(log(body),3.77,1.5))
lines(log(body),dlnorm(log(body),3.77,1.5),col="red")

Q6.
"H0: Party affiliation is independent of education level.
H1: Party affiliation is dependent on education level"
Party = matrix(c(40,20,10,30,35,15,30,45,25),3,3,byrow = T)
colnames(Party) = c("A","B","C")
rownames(Party) = c("SSC","Graduate","PG")
chisq.test(Party, correct = F)
"Since p-value is less than even 1%, we have sufficient evidence to
reject H0. Hence, Party affiliation is dependent on education level"
