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SRM Assignment 2

Writing the state space in the order {Bid (B), Offer (O)},

the generator matrix is:

3(& 1]

oln —u)

The holding times are exponentially distributed with

parameter A in state B,

and p in state O.

¢ BB BB BO
arps =—A, P+ B

c
- P8O _3. pBE |, pBO.

We have a two-state model so:
BB BO
f Pe + {‘F.:.' =1.

Substituting:

o
E rPsBB = _l-:PsBB + (1= rPsBB);

£ [expl(h+n00, B | = exp(+00);

and hence

exp((A+ pr)., R;EB = % exp((A + p)r) + constant.
+u
Since the process is in state Bid at time s (i.e. 1 = 0),

. A
the constant is .
H+A

and thus IHBB =L+
: A+

i " exp(—(A +p)t).
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(i)

(i)

0.1

0.2 0.4
— —_—
— —

0.1 0.1

d

o Pu()=-03P, (1) + 0.1P,, (£)+ 0.3P, (1)

d
- Puy() =02, (£)-05P,,(t)+0.1P, 1)

d
EPM&] =0.1P,,(t)+0.4P,,(t)-0.4P,.(t)

EITHER
To stay in state 4 the equation reduces to:

d
—Pa()=-03P5()

P_(t)=exp(-0.3t)
So for # = 2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 + 0.2)*2 = 0.6

e050.6°
0!

P(P0i(0.6)=0) =

=e " =0.5488



(tv)  The only paths under which the third jump 1s into state C are BAC, CAC
and CBC.

The probabilities of each jump are given by the ratio of the transition rates.

So the probabilities for each path are:

BAC=2.1.1=2
353 45
CAC=1.3.1=1
343 12
cpo=1221
345 15

Sum =7/36 = 0.194.



1. Never 2. Taking »] 3. NoLonger
Taken —» Nimble Taking
Nimble h Nimble

4, Death by 5. Death
Heart Disease other

Using the Markov assumption

OR
the Chapman Kolmogorov equation is

34 31 14 32 24 13 34 34 43 35 54
di+t Py =t Px di Pyt +.|' Py dt Pyt +i’ Py dt Pt +! Py datPyye +.|' Py dt Pyss -

: 54 31 _
Since dt Px+t =¢ Px =0

34 _ 32 24 33 34 34 Exl
dit Px =t Py ae Pise Yo Py ae Pt %o Py ode Prse-

Given that 4, p? =1
And assuming that, for small dt

dt p¥+i‘ = “gﬂdf + O(d{) [ ij

where lim Lﬁﬂ):
dr—0 dt

0,
then substituting, we have

34 32 .24 33, .34 34
di+t Px =t Px !"I'x+ldt +; Py “-x+fdr +, P% +o(dt)

34 34 32 24 33 34
sothat g, py" = py" = Py W dt+, py Wi, dt +o(dr)
d s - pH
— 1i +drFx Tt Py _ 32 24 33 34
and hence E(r Py )= J:_)IUUT = 1 Px Mxsr T 1 Py My
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(i1)

(iii)

(iv)

The mean is equal to the parameter, so there are 3 calls per hour.

The process i1s memoryless so the fact that Fred has not had a call for
15 minutes is irrelevant.

Expected time until next call is 20 minutes.

This is the probability of zero calls in time 0.5 hours.
Using p, (1) =€ (1) / !
OR

e 15(1.5)

Since py(0.5)= ol ,

po(0.5)=¢"° =0.2231 .

The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.

Per hour this is 3 calls times 7 minutes = 21 minutes.

So the probability that the phone is engaged is 21/60 = 0.35.
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(i) The Chapman Kolmogorov equation is

P (Xt +dt) = p,. (x,0) p,. (1,1 +dt)
+ D15 (%, 0) Dy (£ +E) + Py (3,0 Py (2,8 + )

But p,,,(t,t +dt) =0 or other explanation why path through D can be

ignored

So:

Piay (X1 +dt) = Py (X,0) Py (.8 + ) + Pry (X,1) pg (2,8 + )
Assuming that, for small dt

pg(f,f-l-df}:}u!-j{f}df-i-ﬂ(df} i#j

pii (.t +dt)=1+h,;(t)dt +o(dt)

OR
pu(t.t+dt) =1=" %, (t)dt +o(dr)

=i

o(dr) _

where the /s are the instantaneous transition rates and 4 5 gf

0,

then substituting, we have
Prapg (14 dt) = gy (.01~ ()t — (1)) + pygs (x,1)p(e, C,) + o(clr)

50 that

Py (X, 0 +d0) = prp (x.0) = p gy (x,0)(—0(1) — (1)) dt
+pys (x,0)p(t, C,)dt +o(dt)

and hence
d . Py (Xt +dt)— prg (x,1)
— x,t)= lim &4H i
dr P (1) di—0 dt

= PHH ('xs I)(—G{I} - H(I}) + Pus ('xs I)p{f, Cf )



(i1)

The equation simplifies when considering p—(#) to

d

— P (00 =—~(c)+un)p (1)

1 d

d
> Ondr me(ovf) =—(o(r) +u(t) = Elﬂ Pm_f(f) :

HH
Integrate both sides:
i

[In prr (0.0)] = | ~(o(s)+n(s)ds
5=0

as pp(0)=1

prz (0.0 =exp=( [ (o(s)+ (s))ds)
s=()



6]

All three processes have a discrete state space.

A Markov Chain and Markov Jump Chain both operate in discrete time but a Markov jump
Process operates in continuous time.

All have the Markov property which is EITHER that the future development of the process can

be predicted from its present state alone, without reference to its past history.

PiX,ed| X, =x, X, =x,, . X, =x, X,=x]=P[X,e 4 | X,=x]

51 Sy ns

for all times s, <s, < .. <s, <5<t all states x;, x,, ..., x,, x In § and all subsets 4 of §.

R
The Jump Chain obeys the Markov Property and behaves as a Markov Chain except when the
Jump Chain encounters an absorbing state. From that time, it makes no further transitions,
implying that time stops for the Jump Chain.

The Jump Chain associated with X takes the same path through the state space as X does.
The Markov Jump Chain and the Markov Chain are expressed in terms of probabilities
whereas the Markov Jump Process is expressed in terms of rates.

The Markov Chain can have loops in each state, the Markov Jump process cannot and the

Markov Jump Chain only has loops on absorbing states.
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(i1)

The maximum likelihood estimate of the transition intensity from state i to state j 1s
the number of transitions from state i to state j divided by the total waiting time in

state i.
To estimate the transition intensities exactly we therefore need

the total time spent in each state
OR
entry and exit times for each individual for each state,

and the total number of transitions of each type made.

Define p,,(s,t) to be the probability of being in state Active at time s-+7 if Active at
time s.

Then EITHER

d
gpAA (s,0)=—pg4(s,01

0
519,4 r(8,0)=p (s, 01,

OR

2 ps.)=pls.0M

where M =[ Ou l{l;) in order Active, Theft,

OR

Integrated forward equations:

paats.y=exp [ _

t
Par(s.t)= _Lzﬂ P (s,u) 0 1du.



(iii)

Measure from time zero i.e. s = 0 and drop s from notation.

EITHER

1 i (r):_
Paa(t) Ot P "

d

E{ln{ﬂ{z{(f})) =4,
hence p 4 ,(f) = exp(—ps+ C).
As p,4(0)=1,C=0,so

P4 (1) = exp(—i1)
A claim occurs with cost £C if moves to state “Theft Claim™.

Hence the expected cost is C(1—exp(—uT))

OR

Solving for p ., we have

%pﬂ(r} = PO = (1= p 47(£))U (as the model has only two states).

Using an integrating factor, we can write
d
E[“P(W)PATU)} =pexp(ur),

exp(us) p 4 (£) =exp(us) -1,

Par(t)=1—exp(—L1),

and hence the expected cost1s C(1—exp(—ul’)).



(iv)

(v)

u
Active Theft
policy claim

A

We now have %pﬂ(l) =—pOR+A).
So p (1) =exp(—(L+A)).

We want % Par(t)=pas(OR=pexp(—(1+A))).

Solving this produces

T
—u - =M -
exp( (u+l)f))u p,+l(1 exp(—(1+M)7)) .

(L+2)

par(t)=

So claims become H C(l—exp(—(u+A)7)).
n+A
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1 {0,1,234...}

(i1)

(111)  Generator matrix

Lives

(iv) EITHER

A A A A

1 2 3 4 VT >
i 0 0 0

0 1 2 3 4

0 0 0 0 0

Lo—(u+d) A 0 0

0 1) —(u+n) A 0

0 0 W —(u+r) A

0 0 0 1 —(u+2)

[f a Markov jump process X, 1s examined only at the times of transition, the

resulting process is called the jump chain associated with JX,.

OR

A jump chain is each distinct state visited in the order visited where the time
set 1s the times when states are moved between.

(v) Lives

i) {L
u

0 1 2 3 4

1 0 0 0 0 etc.
p/(p+2A) 0 A(u+A) 0 0

0 w/(n+2) 0 Apu+A) 0

0 0 w/(u+4) 0 A(u+d)

0 0 0 p/(u+2A) 0

etc.
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(1)

e The transition rates of moving from each state to each other state must be non-
negative

e OR The transition rates OFF the leading diagonal must be non-negative
OR pij>=0fori1#]

e The transition rates ON the leading diagonal must be non-positive
OR pii <=0
The sum of each row must be zero.
OR i =- Xj+ i Hij

e Should be a finite or countable square matrix.

(11) State space {2,1,0} policies in force.

(iii)
0.4 02
(iv)
4 p(1)=-0.4B,(1)
o dr P T
9 p (1)=0.4P,(1)~0.2P, (1)
N B )

d
E%n{f) = 0-21021 (1)
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. d
(1) EPE(I)Z—ZIXRE(IJ

= %[m Pﬂ(r)] =2t

= In }ﬁ(s} = —s” + constant

We know P (0) =1, hence constant =0

Hence, P(s)= exp™®

(11)  P(in first visit to B at time T |in state A at 1 = 0)

T
= j(, P(remains in A to time 5)
x P(transition to B in time s, 5 + ds)

x P(remains in B to time 7) ds
T
= j P(s) % 25 x Peg(s,T)ds
5=0

Using the result from part (1) and the similar result for Pz; with boundary
condition Pgg(s, 5) = 1, this gives us:

2 2.2
- - +.
e x2sxe T gy

Il
—_

5=0

T b ]
J- 2sxe | ds
s=0

2
=e !l xT?



(iii)

Probability

(a)

The sketch should be shaped like:

(b)

(c)

Time
Commentary:

e Initially probability increases from 0 at 7= 0, and
accelerates as the transition rate from A to B increases.

e However, as transitions increase, it becomes more likely that the
process has already visited state B and jumped back to A.
Therefore the probability of being in the first visit to B tends
(exponentially) to zero.

Differentiate to find turning point:

2

d[ _p e _
—[e ! xt?‘}:the T2 xe™
dt

set derivative equal to zero

e x2x(1-12)=0

implies ¢ = 1 for a positive solution
and, from above analysis, this is clearly a maximum.
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(1)

(i)

(111)

Let N, denote the number of claims up to time #. Since the Poisson process has

stationary increments, we may take 7 = 0, so that the required conditional
distribution is

P(Ty<y, N,=1)

P(Ty<y|N,=1)= P(N)

P( N,=1, Ny-N,=0)
- P(N, =1)

But Ny — N, is independent of N,
and has the same distribution as N_,..

Thus the right hand side above equals

(hye ) M)y

Me-hé‘ s

k)

which is the cdf of the uniform distribution on [0, s].
Since holding times are independent, each having an exponential distribution,
their joint density is

n_—A(nH e,
e {tsty et >0}

We have, as in part (1),

P(MS =k, N, = n)
P(Nr :”)

P(N;=k|N,=n)=

_P( Ny=k, N,-N,=n—k)
- P(N,=n)




Using again that the Poisson process has stationary and independent
increments, and that the number of claims in an interval [0, ¢] is Poisson (A7),
we derive from above that

e—}.s (}LS}JK E-}-“-S)?L."-k (t - S)n—k

k! (n—k)!
PN, =k| N, =n)= e (hr)"
n!
B e MUK (1 — 5)1 7 n!

Ki(n—k) e Hpnm

~n! sk —s)"*
klin—k)! Kk

(-2

which is binomial with parameters n and s/1.




