i) Generator matrix:

B(_}u :’LJ
olp —u)

i) The holding times are exponentially distributed with parameter A in state B,
and p in state O.
i)
O pBB BB BO
Pal ==h B A BT

0 _BO B o
grﬂ ="'“'rPsB _“'rPsB-

iv) We have a two-state model so:

BB BO
B+ B =1
Substituting:

0
E rﬂBB = '}“'rﬂBB +ul- rPsBB];

%[eXP((lJru}f)-fPSBB] = p.exp((A+p)t);

and hence

exp((r+ p)?).rf‘;,BB = }L.exp((l + L)) + constant.
L+ L

Since the process is in state Bid at time 5 (i.e. 1 =0),

. A
the constant is .
L+ A

and thus rPSB‘E= Hoy A exp(—(A+p)).
A+p A+p
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0.1 0.1

%PM[K] =-0.3P_(t)+0.1P(t)+0.3P,.(t)

% s(t)=0.2P_(t)-0.5P,(t)+0.1P,(t)

d
EPM(r) =0.1P,(t)+0.4P (t)-0.4P,(t)

ii)
EITHER

To stay in state 4 the equation reduces to:

4 p (£)=-03P_(¢)
dt A4 AA

which has solution
P_(t)=exp(-0.3t)
So for 1= 2 we have exp(-0.6) = 0.5488.

OR

We can model this as Poisson with parameter (0.1 +0.2)*2 =0.6

e2%0.6°

P(Poi(0.6)=0)= 3

=e™°=0.5488

iv) The only paths under which the third jump is into state C are BAC, CAC
and CBC.
The probabilities of each jump are given by the ratio of the transition rates.

2




So, the probabilities for each path are:

211 2
BAC= _._._=
353 45
131 1
CAC= . . =
343 12
114 1
CBC= —.—.—=—
345 15

Sum = 7/36 = 0.194.

i)
1. Never 2. Taking sl 3. Nolonger
Taken * Nimble Taking
Nimble N Nimble
4. Death by 5. Death
Heart Disease other
i) Using the Markov assumption

OR
the Chapman Kolmogorov equation is

34 _31 14 32 24 33 4 34 44 35 54
di+t Py =t Px atPxst t+ Py drPrst Yt Py dtPyst Yt Py arPysr Yo Py dr Pyt -

. 54 31
Since dtPxst =t Py =0

34 32 24 33 34 34 44
dtst Py =t Py atPxst Yt Py dtPyst Yt Py at Pt

Given that , pi! =1
And assuming that, for small dt

drp¥+r = p%{;;tﬂ +o(dt) i#]

where lim o(dr) =

0,
di—0 dt

then substituting, we have
34 3224 33 34 34
drst P5 =1 Py Wi At +; Py py A+, pi +o(dr)

34 34 32 24 33 34
so that dar+t Py —1 Px =t Px P-_\'de +: Py P—1+fdt+0(d”




i)
i)

ii)

The mean is equal to the parameter, so there are 3 calls per hour.

The process is memoryless so the fact that Fred has not had a call for
15 minutes is irrelevant.

Expected time until next call is 20 minutes.

This is the probability of zero calls in time 0.5 hours.
Using p, (1) =€~ (M) / j!
OR

=15 0
(1.5
Since py(0.5)= &40

0!
P0(0.5)=e71° =0.2231 .

The expected time that Fred is on the phone is the expected number of
calls times the expected length of a call.

Per hour this is 3 calls times 7 minutes = 21 minutes.

So, the probability that the phone is engaged is 21/60 = 0.35.

EITHER

Using the Markov assumption,
OR

The Chapman Kolmogorov equation is




Py (X1 % A1) = Prg (30, 8) P (2.1 + A1)
+ P (X )P (1 +dE) + pop (x. 1) Py, (2.1 +dE)

But pry(t.t+df)=0 or other explanation why path through D can be
ignored

So:
Doy (X1 4d1) = P (X 1) P (1.2 +d8) + P (x. 1) Py (2.2 + )
Assuming that, for small d¢

Py (t.t+df)= I'Ly. ()dt + o(dt) HE ]

Dt +dt) =1+ d; (1)dt +o(dr)

OR

pu(t.t+di)=1= hy(t)dr +o(dt)

i

_oldr)
where the As are the instantaneous transition rates and 5 .y 4

0,
then substituting, we have

P (x.t+df) = pggy(x. )1 =a(f)dt =u(t)dt) + pgs (x.1)p(r. C; ) + o(dt)
so that

Prpy (.t +d6) = ppgy (x.1) = pygg (x.)(=0() = (1))t
+pgs (x.D)p(t, C;)dt + o(dt)

and hence

fiy PEE T+ dl) = P (x.1)
dt—{ ﬂrf

= pgg (x.1)(=o(®) = p(1) + pgs (x.0)p(.C;)

d
- 1=
drFHH(I )

The equation simplifies when considering pz(?) to

d
—p_(0,t)=—(a(t)+ut)p_ (1)
dt” m m




1 d d
— " p (0.=- )=—Ilnp (1) .
p_(O.r}drpzﬁr( )=—(a(t)+ u(t)) T p@()
HH

Integrate both sides:

—

(0 pzz(0.0)] = [ ~(o(s) +u(s)ds

5=0

as pH—H(0}=l

i
Pz (0.0 =exp—( [ (0(s) +u(s))ds)
5=0

6. All three processes have a discrete state space.
A Markov Chain and Markov Jump Chain both operate in discrete time but a Markov
jump
Process operates in continuous time.
All have the Markov property which is
EITHER that the future development of the process can be predicted from its present
state alone, without reference to its past history.
OR that
PiX,e 4| X, =x,, X, =x,, ... X, =x,.X,=x]=P[X,e 4 | X,=1]

s n

for all times 5, <5, <...<s, <s5<f,all states x;, x,, ..., x, , x iIn S and all subsets 4 of S.

EITHER if a Markov Jump Process X is examined only at the times of its transitions,
the resulting process is called the Jump Chain associated with X.

OR for a Jump Process X the Jump Chain X shows the states visited by X, taking an
identical path through the state space.

The Jump Chain obeys the Markov Property and behaves as a Markov Chain except
when the Jump Chain encounters an absorbing state. From that time, it makes no
further transitions, implying that time stops for the Jump Chain.

The Jump Chain associated with X takes the same path through the state space as X
does. However, questions about the times taken to visit a state are likely to have
different answers for X and for the Jump Chain associated with X.

The Markov Jump Chain and the Markov Chain are expressed in terms of
probabilities

whereas the Markov Jump Process is expressed in terms of rates.

The Markov Chain can have loops in each state, the Markov Jump process cannot
and the

Markov Jump Chain only has loops on absorbing states.

i) The maximum likelihood estimates of the transition intensity from state i to
state j is the number of transitions from state i to state j divided by the total
waiting time in state i.

To estimate the transition intensities exactly we therefore need
the total time spent in each state
OR




entry and exit times for each individual for each state,
and the total number of transitions of each type made.

Define p,,(s.t) to be the probability of being in state Active at time s+ if Active at

time s.

Then EITHER

0
5 P (5,8)=—p 44(s, D1

'
= pur(s.D=p (.00,
ot

OR

%p(s,r) = p(s,t)M

where M = [_OH E] in order Active, Theft,

OR
Integrated forward equations:

Pyy(s.t)= exp[— ' pdu)
=5

i
PAT[”}ZLORH(&H)-H-WH-

iii) Measure from time zero i.e., s = 0 and drop s from notation.
EITHER

2 @)=+,

hence p ,(f) = exp(—ut + C).
As p,4(0)=1,C=0,s0

D 44(t) =exp(—p1)
A claim occurs with cost £C if moves to state “Theft Claim”.

Hence the expected cost is C (1 exp(-uT))
OR

Solving for p . we have

d
§F_4I () =p . (On=~1-p () (as the model has only two states).




)

Using an integrating factor, we can write

& [exp)P.47 () = exp(n).

exp(lLf) p 47 () = exp(lLr) —1,

Par () =1—exp(—1).
and hence the expected costis C(1—exp(—u7l)).

OR

Solving the integrated forward equation

P (T)= J; exp(—ts Juds =[—exp(us)]; =1-exp(-u7).

and hence the expected costis C(1—exp(—u7l)).

1
Active Theft
policy claim

A

We now have ()= (N +).
So p g (f)=exp(—(u+1)).
d
We want g P yr(0)=p (Ou=pexp(—(u+A))).

Solving this produces p ;7 (¢) = ( 7L) ———exp(—(1L+ W)t )) = “%(l—exp(—(p—i-?t)lr)) :

So claims become

“lC(I—exp(—(uH)T)).

0,1,2,3,4...}




ii)

vi)

i)
ii)
iii)
iv)
10.

T n ) T T n u
Generator matrix

Lives 0 1 2 3 4
0 0 0 0 0
n —(u+a) A 0 0
0 Tl —(u+2) A 0
0 0 Tl —(u+24) A
0 0 0 u —(u+2a)

EITHER

If a Markov jump process Xt is examined only at the times of transition, the
resulting process is called the jump chain associated with Xt

OR

A jump chain is each distinct state visited in the order visited where the time
set is the times when states are moved between.

Lives 0

1
u/(u+2)
0
0
0

etc.

1 2

0 0

0 AL (D)
u/(u+d) 0

0 n/(u+a)

0 0

0
0

Al (u+R)
0

u/(n+a)

0
0
0

A ()
0

etc.




d
—-P(t) =21 P (1)

d
= E[h%{”] = -2t

= LnP{E(s) = —s” + constant

We know P_E(O) =1, hence constant =0

_ -5’
Hence, Eﬁ{s} =exp
i) P(in first visit to B at time T in state A att = 0)

T . :
= J.o P(remains in A to time 5)
x P(transition to B in time s, 5 + ds)

x P(remains in B to time 7) ds

T
= I P—(s) x 25 x P=(5,T)ds

5=0

Using the result from part (i) and the similar result for Pzz with boundary
condition Pgg(s, s) = 1, this gives us:

iii)
a) The sketch should be shaped like:

Probability

Time
b) Commentary:
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¢ Initially probability increases from 0 at T = 0, and accelerates as
the transition rate from A to B increases.

¢ However, as transitions increase, it becomes more likely that the
process has already visited state B and jumped back to A.
Therefore, the probability of being in the first visit to B tends
(exponentially) to zero.

c) Differentiate to find turning point:
i[e_rl X rz} =2fx e_!2 -28 x e_rl
dt

set derivative equal to zero

e x2x(1-£)=0

implies ¢ =1 for a positive solution
and, from above analysis, this is clearly a maximum.
11.
i) Let Nt denote the number of claims up to time t. Since the Poisson process
has stationary increments, we may take t = 0, so that the required conditional
distribution is

P(Ty<y, N,=1)
P(N, =1)

P(Ty<y|N, =1)=

P( N, =1, N,-N, =0)
P(N, =1)

But N, — N, is independent of IV,
and has the same distribution as N_..

Thus the right hand side above equals

(?\.}-‘ e—?..j' ) e—?&(s—_l') y

hse ™ 5

which is the cdf of the uniform distribution on [0, s].
ii) Since holding times are independent, each having an exponential distribution,
their joint density is

kn@—l{q iy .., }l
' (. det,=0)

iii) We have, as in part (i),
P(N,=k, N,=n)

P(N_=k|N,=n)=
(‘s | N "?) P(N,.=n)

_P( N,=k, N,-N,=n-k)
P(N, =n)
Using again that the Poisson process has stationary and independent

increments, and that the number of claims in an interval [0, t] is Poisson ( t),
we derive from above that
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e—ls{}d)k ‘ e—l(f—s)l}r—k{r - S)n—;(

k! (m—k)!

P(N,=k|N,=n)= oy

n!

_Q-;‘J;’L”Sk(f—s)”-k n
ki(n—k)! g My

_n! sE(t—s)k
kE'(n—-k)! -k

MCICN

which is binomial with parameters » and s/t.
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